scholarly journals Vertical fluxes conditioned on vorticity and strain reveal submesoscale ventilation

Author(s):  
Dhruv Balwada ◽  
Qiyu Xiao ◽  
Shafer Smith ◽  
Ryan Abernathey ◽  
Alison R. Gray

AbstractIt has been hypothesized that submesoscale flows play an important role in the vertical transport of climatically important tracers, due to their strong associated vertical velocities. However, the multi-scale, non-linear, and Lagrangian nature of transport makes it challenging to attribute proportions of the tracer fluxes to certain processes, scales, regions, or features. Here we show that criteria based on the surface vorticity and strain joint probability distribution function (JPDF) effectively decomposes the surface velocity field into distinguishable flow regions, and different flow features, like fronts or eddies, are contained in different flow regions. The JPDF has a distinct shape and approximately parses the flow into different scales, as stronger velocity gradients are usually associated with smaller scales. Conditioning the vertical tracer transport on the vorticity-strain JPDF can therefore help to attribute the transport to different types of flows and scales. Applied to a set of idealized Antarctic Circumpolar Current simulations that vary only in horizontal resolution, this diagnostic approach demonstrates that small-scale strain dominated regions that are generally associated with submesoscale fronts, despite their minuscule spatial footprint, play an outsized role in exchanging tracers across the mixed layer base and are an important contributor to the large-scale tracer budgets. Resolving these flows not only adds extra flux at the small scales, but also enhances the flux due to the larger-scale flows.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Na Cheng ◽  
Shuli Song ◽  
Wei Li

The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick’s Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward.


2017 ◽  
Vol 145 (4) ◽  
pp. 1149-1159 ◽  
Author(s):  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Michael C. Pitts ◽  
Lamont R. Poole ◽  
Marion Maturilli

Abstract The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.


2016 ◽  
Author(s):  
R. J. Haarsma ◽  
M. Roberts ◽  
P. L. Vidale ◽  
C. A. Senior ◽  
A. Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest the possibility for significant changes in both large-scale aspects of circulation, as well as improvements in small-scale processes and extremes. However, such high resolution global simulations at climate time scales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centers and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other MIPs. Increases in High Performance Computing (HPC) resources, as well as the revised experimental design for CMIP6, now enables a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility to extend to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulation. HighResMIP thereby focuses on one of the CMIP6 broad questions: “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


Author(s):  
T. El-Aguizy ◽  
Sang-Gook Kim

The scale decomposition of a multi-scale system into small-scale order domains will reduce the complexity of the system and will subsequently ensure a success in nanomanufacturing. A novel method of assembling individual carbon nanotube has been developed based on the concept of scale decomposition. Current technologies for organized growth of carbon nanotubes are limited to very small-scale order. The nanopelleting concept is to overcome this limitation by embedding carbon nanotubes into micro-scale pellets that enable large-scale assembly as required. Manufacturing processes have been developed to produce nanopellets, which are then transplanted to locations where the functionalization of carbon nanotubes are required.


2019 ◽  
Vol 8 (9) ◽  
pp. 417 ◽  
Author(s):  
Wei Cui ◽  
Dongyou Zhang ◽  
Xin He ◽  
Meng Yao ◽  
Ziwei Wang ◽  
...  

Remote sensing image captioning involves remote sensing objects and their spatial relationships. However, it is still difficult to determine the spatial extent of a remote sensing object and the size of a sample patch. If the patch size is too large, it will include too many remote sensing objects and their complex spatial relationships. This will increase the computational burden of the image captioning network and reduce its precision. If the patch size is too small, it often fails to provide enough environmental and contextual information, which makes the remote sensing object difficult to describe. To address this problem, we propose a multi-scale semantic long short-term memory network (MS-LSTM). The remote sensing images are paired into image patches with different spatial scales. First, the large-scale patches have larger sizes. We use a Visual Geometry Group (VGG) network to extract the features from the large-scale patches and input them into the improved MS-LSTM network as the semantic information, which provides a larger receptive field and more contextual semantic information for small-scale image caption so as to play the role of global perspective, thereby enabling the accurate identification of small-scale samples with the same features. Second, a small-scale patch is used to highlight remote sensing objects and simplify their spatial relations. In addition, the multi-receptive field provides perspectives from local to global. The experimental results demonstrated that compared with the original long short-term memory network (LSTM), the MS-LSTM’s Bilingual Evaluation Understudy (BLEU) has been increased by 5.6% to 0.859, thereby reflecting that the MS-LSTM has a more comprehensive receptive field, which provides more abundant semantic information and enhances the remote sensing image captions.


1984 ◽  
Vol 142 ◽  
pp. 217-231 ◽  
Author(s):  
Hakuro Oguchi ◽  
Osamu Inoue

This paper aims to elucidate the structure of the turbulent mixing layers, especially, its dependence on initial disturbances. The mixing layers are produced by setting a woven-wire screen perpendicular to the freestream in the test section of a wind tunnel to obstruct part of the flow. Three kinds of model geometry are treated; these model screens produced mixing layers which may be regarded as the equivalents of the plane mixing layer and of two-dimensional and axisymmetric wakes issuing into ambient streams of higher velocity. The initial disturbances are imposed by installing thin rods of various sizes along the edge of the screen or at the origin of the mixing layer. Flow features are visualized by the smoke-wire method. Statistical quantities are measured by a laser-Doppler velocimeter. In all cases large-scale transverse vortices seem to persist, although comparatively small-scale vortices are superimposed on the flow field in the mixing layer. The mixing layers are in self-preserving state at least up to third-order moments, but the self-preserving state is different in each case. The growth rates of the mixing layer are shown to depend strongly on the initial disturbance imposed.


Author(s):  
Ling Zhen ◽  
Claudia del Carmen Gutierrez-Torres

The question of “where and how the turbulent drag arises” is one of the most fundamental problems unsolved in fluid mechanics. However, the physical mechanism responsible for the friction drag reduction is still not well understood. Over decades, it is found that the turbulence production and self-containment in a boundary layer are organized phenomena and not random processes as the turbulence looks like. The further study in the boundary layer should be able to help us know more about the mechanisms of drag reduction. The wavelet-based vector multi-resolution technique was proposed and applied to the two dimensional PIV velocities for identifying the multi-scale turbulent structures. The intermediate and small scale vortices embedded within the large-scale vortices were separated and visualized. By analyzing the fluctuating velocities at different scales, coherent eddy structures were obtained and this help us obtain the important information on the multi-scale flow structures in the turbulent flow. By comparing the eddy structures in different operating conditions, the mechanism to explain the drag reduction caused by micro bubbles in turbulent flow was proposed.


2015 ◽  
Vol 45 (6) ◽  
pp. 1491-1509 ◽  
Author(s):  
Louis-Philippe Nadeau ◽  
Raffaele Ferrari

AbstractEddy-permitting simulations are used to show that basinlike gyres can be observed in the large-scale barotropic flow of a wind-driven channel with a meridional topographic ridge. This is confirmed using both two-layer quasigeostrophic and 25-level primitive equation models at high horizontal resolution. Comparing results from simulations with and without the topographic ridge, it is shown that the zonal baroclinic transport in the channel increases with increasing wind stress when the bottom topography is flat but not when there is a meridional ridge. The saturation of transport for increasing wind occurs in conjunction with the development of recirculating gyres in the large-scale barotropic streamfunction. This suggests that the total circulation can be thought of as a superposition of a gyre mode (which has zero circumpolar transport) and a free circumpolar mode (which contains all of the transport). Basinlike gyres arise in the channel because the topography steers the barotropic streamlines and supports a frictional boundary layer similar to the more familiar ones observed along western boundaries. The gyre mode is thus closely linked with the bottom form stress exerted by the along-ridge flow and provides the sink for the wind momentum input. In this framework, any increase in wind forcing spins a stronger gyre as opposed to feeding the circumpolar transport. This hypothesis is supported with a suite of experiments where key parameters are carried over a wide range: wind stress, wind stress curl, ridge height, channel length, and bottom friction.


Author(s):  
M. T. Rahmati ◽  
G. Alfano ◽  
H. Bahai

Flexible risers which are used for transporting oil and gas between the seabed and surface in ultra-deep waters have a very complex internal structure. Therefore, accurate modeling of their behaviour is a great challenge for the oil and gas industry. Constitutive laws based on beam models which allow the large-scale dynamics of pipes to be related to the behaviour of its internal components can be used for multi-scale analysis of flexible risers. An integral part of these models is the small-scale FE model chosen and the detailed implementation of the boundary conditions. The small scale FE analyses are typically carried out on models of up to a few meters length. The computational requirements of these methods limit their applications for only multi-scale structural analysis based on a sequential approach. For nested multi-scale approaches (i.e. the so called FE2 method) and for multi-scale multi-physic analyses, e.g. fluid structure interaction modeling of flexible risers, more efficient methods are required. The emphasis of the present work is on a highly efficient small-scale modelling method for flexible risers. By applying periodic boundary conditions, only a small fraction of a flexible pipe is used for detailed analysis. The computational model is firstly described. Then, the capability of the method in capturing the detailed nonlinear effects and the great advantage in terms of significant CPU time saving entailed by this method are demonstrated. For proof of concept the approach is applied on a simplified 3-layer pipe made of inner and outer polymer layers and an intermediate armour layer made of 40 steel tendons.


2016 ◽  
Vol 9 (11) ◽  
pp. 4185-4208 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Malcolm J. Roberts ◽  
Pier Luigi Vidale ◽  
Catherine A. Senior ◽  
Alessio Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


Sign in / Sign up

Export Citation Format

Share Document