Origins and Dynamics of the 90-Day and 30–60-Day Variations in the Equatorial Indian Ocean

2005 ◽  
Vol 35 (5) ◽  
pp. 708-728 ◽  
Author(s):  
Weiqing Han

Abstract Sea level observations in the equatorial Indian Ocean show a dominant spectral peak at 90 days and secondary peaks at 30–60 days over an intraseasonal period (20–90 days). A detailed investigation of the origins and dynamics of these variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Indian Ocean basin for the period 1988–2001: one is forced by NCEP 3-day mean forcing fields together with the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) pentad precipitation, and the other is forced by monthly mean fields. To help to understand the role played by the wind-driven equatorial wave dynamics, a linear continuously stratified ocean model is also used. Both the observed and modeled 90-day sea level anomaly fields and HYCOM surface current clearly show equatorial Kelvin and first-meridional-mode Rossby wave structures that are forced by the 90-day winds. The wind amplitude at the 90-day period, however, is weaker than that for the 30–60-day period, suggesting that the equatorial Indian Ocean selectively responds to the 90-day winds. This selective response arises mainly from the resonant excitation of the second-baroclinic-mode (n = 2) waves by the 90-day winds. In this case, Rossby waves reflected from the eastern ocean boundary enhance the directly forced response in the ocean interior, strengthening the 90-day peak. In addition, the directly forced response increases monotonically with the increase of forcing period, contributing to the larger variances of currents and sea level at 90 days. Two factors account for this monotonic increase in directly forced response. First, at lower frequency, both Rossby and Kelvin waves associated with the low-order baroclinic modes have longer wavelengths, which are more efficiently excited by the larger-scale winds. Second, responses of the high-order modes directly follow the local winds, and their amplitudes are proportional to both forcing period and wind strength. Although most energy is surface trapped, there is a significant amount that propagates through the pycnocline into the deep ocean. The dominance of the 90-day peak occurs not only at the surface but also in the deeper layers down to 600 m. In the deeper ocean, both the directly forced response and reflected waves associated with the first two baroclinic modes contribute to the 90-day variation. Spectra of the observed sea surface temperature (SST) also show a 90-day peak, likely a result of the selective response of the equatorial Indian Ocean at the 90-day period. Near the surface, the spectral peaks of currents and sea level at the 30–60-day period are directly forced by winds that peak at 30–60 days. In the deeper layers, both directly forced and reflected waves associated with the first two baroclinic modes contribute. Oceanic instabilities can have significant contributions only near the western boundary and near 5°N south of Sri Lanka.

2018 ◽  
Vol 48 (6) ◽  
pp. 1333-1347 ◽  
Author(s):  
Ke Huang ◽  
Weiqing Han ◽  
Dongxiao Wang ◽  
Weiqiang Wang ◽  
Qiang Xie ◽  
...  

AbstractThis paper investigates the features of the Equatorial Intermediate Current (EIC) in the Indian Ocean and its relationship with basin resonance at the semiannual time scale by using in situ observations, reanalysis output, and a continuously stratified linear ocean model (LOM). The observational results show that the EIC is characterized by prominent semiannual variations with velocity reversals and westward phase propagation and that it is strongly influenced by the pronounced second baroclinic mode structure but with identifiable vertical phase propagation. Similar behavior is found in the reanalysis data and LOM results. The simulation of wind-driven equatorial wave dynamics in the LOM reveals that the observed variability of the EIC can be largely explained by the equatorial basin resonance at the semiannual period, when the second baroclinic Rossby wave reflected from the eastern boundary intensifies the directly forced equatorial Kelvin and Rossby waves in the basin interior. The sum of the first 10 modes can reproduce the main features of the EIC. Among these modes, the resonant second baroclinic mode makes the largest contribution, which dominates the vertical structure, semiannual cycle, and westward phase propagation of the EIC. The other 9 modes, however, are also important, and the superposition of the first 10 modes produces downward energy propagation in the equatorial Indian Ocean.


2011 ◽  
Vol 41 (6) ◽  
pp. 1252-1270 ◽  
Author(s):  
Weiqing Han ◽  
Julian P. McCreary ◽  
Yukio Masumoto ◽  
Jérôme Vialard ◽  
Benét Duncan

Abstract Previous studies have investigated how second-baroclinic-mode (n = 2) Kelvin and Rossby waves in the equatorial Indian Ocean (IO) interact to form basin resonances at the semiannual (180 day) and 90-day periods. This paper examines unresolved issues about these resonances, including the reason the 90-day resonance is concentrated in the eastern ocean, the time scale for their establishment, and the impact of complex basin geometry. A hierarchy of ocean models is used: an idealized one-dimensional (1D) model, a linear continuously stratified ocean model (LCSM), and an ocean general circulation model (OGCM) forced by Quick Scatterometer (QuikSCAT) wind during 2000–08. Results indicate that the eastern-basin concentration of the 90-day resonance happens because the westward-propagating Rossby wave is slower, and thus is damped more than the eastward-propagating Kelvin wave. Results also indicate that superposition with other baroclinic modes further enhances the eastern maximum and weakens sea level variability near the western boundary. Without resonance, although there is still significant power at 90 and 180 days, solutions have no spectral peaks at these periods. The key time scale for the establishment of all resonances is the time it takes a Kelvin wave to cross the basin and a first-meridional-mode (ℓ = 1) Rossby wave to return; thus, even though the amplitude of the 90-day winds vary significantly, the 90-day resonance can be frequently excited in the real IO, as evidenced by satellite-observed and OGCM-simulated sea level. The presence of the Indian subcontinent enhances the influence of equatorial variability in the north IO, especially along the west coast of India. The Maldives Islands weaken the 180-day resonance amplitude but have little effect on the 90-day resonance, because they fall in its “node” region. Additionally, resonance at the 120-day period for the n = 1 mode is noted.


2006 ◽  
Vol 36 (5) ◽  
pp. 930-944 ◽  
Author(s):  
Dongliang Yuan ◽  
Weiqing Han

Abstract An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.


2015 ◽  
Vol 45 (7) ◽  
pp. 1804-1821 ◽  
Author(s):  
Jing Wang ◽  
Dongliang Yuan

AbstractThe equatorial wave dynamics of sea level variations during negative Indian Ocean dipole (nIOD) events are investigated using the LICOM ocean general circulation model forced with the European Centre for Medium-Range Weather Forecast reanalysis wind stress and heat flux from 1990 to 2001. The work is a continuation of the study by Yuan and Liu, in which the equatorial wave dynamics during positive IOD events are investigated. The model has reproduced the sea level anomalies of satellite altimeter data well. Long equatorial waves extracted from the model output suggest two kinds of negative feedback during nIOD events: the western boundary reflection and the easterly wind bursts. During the strong 1998–99 nIOD event, the downwelling anomalies in the eastern Indian Ocean are terminated by persistent and strong upwelling Kelvin waves from the western boundary, which are reflected from the wind-forced equatorial Rossby waves over the southern central Indian Ocean. During the 1996–97 nIOD, however, the reflection of upwelling anomalies at the western boundary is terminated by the arrival of downwelling equatorial Rossby waves from the eastern boundary reflection in early 1997. Therefore, the negative feedback of this nIOD event is not provided by the western boundary reflection. The downwelling anomalies in the eastern basin during the 1996–97 nIOD event are terminated by easterly wind anomalies over the equatorial Indian Ocean in early 1997. The disclosed equatorial wave dynamics are important to the simulation and prediction of IOD evolution.


2001 ◽  
Vol 24 (1) ◽  
pp. 53-63 ◽  
Author(s):  
S. K. Singh ◽  
Sujit Basu ◽  
Raj Kumar ◽  
Vijay K. Agarwal

2020 ◽  
Author(s):  
Iyyappan Suresh ◽  
Jerome Vialard ◽  
Matthieu Lengaigne ◽  
Takeshi Izumo ◽  
Muraleedharan Pillathu Moolayil

<p>Remote wind forcing plays a strong role in the Northern Indian Ocean, where oceanic anomalies can travel long distances within the coastal waveguide. Previous studies for instance emphasized that remote equatorial forcing is the main driver of the sea level and currents intraseasonal variability along the west coast of India (WCI). Until now, the main pathway for this connection between the equatorial and coastal waveguides was thought to occur in the eastern equatorial Indian Ocean, through coastal Kelvin waves that propagate around the Bay of Bengal rim and then around Sri Lanka to the WCI. Using a linear, continuously stratified ocean model, the present study demonstrates that two other mechanisms in fact dominate. First, the equatorial waveguide also intersects the coastal waveguide at the southern tip of India and Sri Lanka, creating a direct connection between the equator and WCI. Rossby waves reflected from the eastern equatorial Indian Ocean boundary indeed have a sufficiently wide meridional scale to induce a pressure signal at the Sri Lankan coast, which eventually propagates to the WCI as a coastal Kelvin wave. Second, local wind variations in the vicinity of Sri Lanka generate strong intraseasonal signals, which also propagate to the WCI along the same path. Sensitivity experiments indicate that these two new mechanisms (direct equatorial connection and local wind variations near Sri Lanka) dominate the WCI intraseasonal sea level variability, with the “classical” pathway around the Bay of Bengal only coming next. Other contributions (Bay of Bengal forcing, local WCI forcing) are much weaker.</p><p>We further show that the direct connection between the equatorial waveguide and WCI is negligible at seasonal timescale, but not at interannual timescales where it contributes to the occurrence of anoxic events. By providing an improved understanding of the mechanisms that control the WCI thermocline and oxycline variability, our results could have socio-economic implications for regional fisheries and ecosystems.</p>


2008 ◽  
Vol 250 (1-2) ◽  
pp. 104-113 ◽  
Author(s):  
Eberhard Gischler ◽  
J. Harold Hudson ◽  
Andrzej Pisera

2009 ◽  
Vol 39 (5) ◽  
pp. 1115-1132 ◽  
Author(s):  
Dongliang Yuan ◽  
Hailong Liu

Abstract Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997–98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.


1978 ◽  
Vol 106 (10) ◽  
pp. 1465-1475 ◽  
Author(s):  
Gandikota V. Rao ◽  
Henry M. E. Van De Boogaard ◽  
William C. Bolhofer

Sign in / Sign up

Export Citation Format

Share Document