scholarly journals Airborne Rain-Rate Measurement with a Wide-Swath Radar Altimeter

2014 ◽  
Vol 31 (4) ◽  
pp. 860-875 ◽  
Author(s):  
Edward J. Walsh ◽  
Ivan PopStefanija ◽  
Sergey Y. Matrosov ◽  
Jian Zhang ◽  
Eric Uhlhorn ◽  
...  

Abstract The NOAA Wide-Swath Radar Altimeter (WSRA) uses 80 narrow beams spread over ±30° in the cross-track direction to generate raster lines of sea surface topography at a 10-Hz rate from which sea surface directional wave spectra are produced. A ±14° subset of the backscattered power data associated with the topography measurements is used to produce independent measurements of rain rate and sea surface mean square slope at 10-s intervals. Theoretical calculations of rain attenuation at the WSRA 16.15-GHz operating frequency using measured drop size distributions for both mostly convective and mostly stratiform rainfall demonstrate that the WSRA absorption technique for rain determination is relatively insensitive to both ambient temperature and the characteristics of the drop size distribution, in contrast to reflectivity techniques. The variation of the sea surface radar reflectivity in the vicinity of a hurricane is reviewed. Fluctuations in the sea surface scattering characteristics caused by changes in wind speed or the rain impinging on the surface cannot contaminate the rain measurement because they are calibrated out using the WSRA measurement of mean square slope. WSRA rain measurements from a NOAA WP-3D hurricane research aircraft off the North Carolina coast in Hurricane Irene on 26 August 2011 are compared with those from the stepped frequency microwave radiometer (SFMR) on the aircraft and the Next Generation Weather Radar (NEXRAD) National Mosaic and Multi-Sensor Quantitative Precipitation Estimation (QPE) system.

2021 ◽  
Author(s):  
Estelle Obligis ◽  
Ewa Kwiatkowska ◽  
Anne O'Carroll ◽  
Remko Scharroo

<p>The first Copernicus Sentinel-3 satellite, Sentinel-3A, was launched in early 2016, and its twin Sentinel-3B in April 2018. The Sentinel-3 constellation is now fully operational with Sentinel-3B satellite flying in the same orbit plan with a phase difference of 140°. This constellation provides a unique consistent, long-term collection of marine and land data for operational analysis, forecasting and environmental and climate monitoring. The marine centre is part of the Sentinel-3 Payload Data Ground Segment, located at EUMETSAT. This centre together with the existing EUMETSAT facilities provides a routine centralised service for operational meteorology, oceanography, and other Sentinel-3 marine users as part of the European Commission's Copernicus programme. The EUMETSAT marine centre delivers operational Sea Surface Temperature, Ocean Colour and Sea Surface Topography data products based on the measurements from the Sea and Land Surface Temperature Radiometer (SLSTR), Ocean and Land Colour Instrument (OLCI) and Synthetic Aperture Radar Altimeter (SRAL), all aboard Sentinel-3 satellites. All products have been developed together with ESA and industry partners and EUMETSAT is responsible for the production, distribution, performance and future evolution of Level-2 marine products. We will give an overview of the scientific characteristics and algorithms of all marine Level-2 products, as well as instrument calibration and product validation results based on on-going Sentinel-3 Cal/Val activities. Information will be also provided about the current status of the product dissemination and the future evolutions that are envisaged. Also, we will provide information how to access Sentinel-3 data from EUMETSAT and where to look for further information.</p>


2020 ◽  
Vol 12 (15) ◽  
pp. 2496
Author(s):  
Lin Ren ◽  
Jingsong Yang ◽  
Xiao Dong ◽  
Yunhua Zhang ◽  
Yongjun Jia

In this study, we performed preliminary comparative evaluation and correction of two-dimensional sea surface height (SSH) data from the Chinese Tiangong-2 Interferometric Imaging Radar Altimeter (InIRA) with the goal of advancing its retrieval. Data from the InIRA were compared with one-dimensional SSH data from the traditional altimeters Jason-2, Saral/AltiKa, and Jason-3. Because the sea state bias (SSB) of distributed InIRA data has not yet been considered, consistency was maintained by neglecting the SSB for the traditional altimeters. The results of the comparisons show that the InIRA captures the same SSH trends as those obtained by traditional altimeters. However, there is a significant deviation between InIRA and traditional altimeter SSHs; consequently, systematic and parametric biases were analyzed. The parametric bias was found to be related to the incidence angles and a significant wave height. Upon correcting the two biases, the standard deviation significantly reduced to 8.1 cm. This value is slightly higher than those of traditional altimeters, which typically have a bias of ~7.0 cm. The results indicate that the InIRA is promising in providing a wide swath of SSH measurements. Moreover, we recommend that the InIRA retrieval algorithm should consider the two biases to improve SSH accuracy.


2018 ◽  
Vol 35 (3) ◽  
pp. 593-608 ◽  
Author(s):  
C. W. Fairall ◽  
Sergey Y. Matrosov ◽  
Christopher R. Williams ◽  
E. J. Walsh

ABSTRACTThe NOAA W-band radar was deployed on a P-3 aircraft during a study of storm fronts off the U.S. West Coast in 2015 in the second CalWater (CalWater-2) field program. This paper presents an analysis of measured equivalent radar reflectivity factor Zem profiles to estimate the path-averaged precipitation rate and profiles of precipitation microphysics. Several approaches are explored using information derived from attenuation of Zem as a result of absorption and scattering by raindrops. The first approach uses the observed decrease of Zem with range below the aircraft to estimate column mean precipitation rates. A hybrid approach that combines Zem in light rain and attenuation in stronger rain performed best. The second approach estimates path-integrated attenuation (PIA) via the difference in measured and calculated normalized radar cross sections (NRCSm and NRCSc, respectively) retrieved from the ocean surface. The retrieved rain rates are compared to estimates from two other systems on the P-3: a Stepped Frequency Microwave Radiometer (SFMR) and a Wide-Swath Radar Altimeter (WSRA). The W-band radar gives reasonable values for rain rates in the range 0–10 mm h−1 with an uncertainty on the order of 1 mm h−1. Mean profiles of Zem, raindrop Doppler velocity, attenuation, and precipitation rate in bins of rain rate are also computed. A method for correcting measured profiles of Zem for attenuation to estimate profiles of nonattenuated profiles of Ze is examined. Good results are obtained by referencing the surface boundary condition to the NRCS values of PIA. Limitations of the methods are discussed.


1998 ◽  
Vol 103 (C6) ◽  
pp. 12587-12601 ◽  
Author(s):  
Edward J. Walsh ◽  
Douglas C. Vandemark ◽  
Carl A. Friehe ◽  
Sean P. Burns ◽  
Djamal Khelif ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


Sign in / Sign up

Export Citation Format

Share Document