scholarly journals Adaptive Range Oversampling to Improve Estimates of Polarimetric Variables on Weather Radars

2014 ◽  
Vol 31 (9) ◽  
pp. 1853-1866 ◽  
Author(s):  
Christopher D. Curtis ◽  
Sebastián M. Torres

Abstract One way to reduce the variance of meteorological-variable estimates on weather radars without increasing dwell times is by using range oversampling techniques. Such techniques could significantly improve the estimation of polarimetric variables, which typically require longer dwell times to achieve the desired data quality compared to the single-polarization spectral moments. In this paper, an efficient implementation of adaptive pseudowhitening that was developed for single-polarization radars is extended for dual polarization. Adaptive pseudowhitening maintains the performance of pure whitening at high signal-to-noise ratios and equals or outperforms the digital matched filter at low signal-to-noise ratios. This approach results in improvements for polarimetric-variable estimates that are consistent with the improvements for spectral-moment estimates described in previous work. The performance of the proposed technique is quantified using simulations that show that the variance of polarimetric-variable estimates can be reduced without modifying the scanning strategies. The proposed technique is applied to real weather data to validate the expected improvements that can be realized operationally.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2020 ◽  
Author(s):  
Rishikesh Kulkarni ◽  
Anneliese Gest ◽  
Chun Kei Lam ◽  
Benjamin Raliski ◽  
Feroz James ◽  
...  

<p>High signal-to-noise optical voltage indicators will enable simultaneous interrogation of membrane potential in large ensembles of neurons. However, design principles for voltage sensors with high sensitivity and brightness remain elusive, limiting the applicability of voltage imaging. In this paper, we use molecular dynamics (MD) simulations and density functional theory (DFT) calculations to guide the design of a bright and sensitive green-fluorescent voltage-sensitive fluorophore, or VoltageFluor (VF dye), that uses photoinduced electron transfer (PeT) as a voltage-sensing mechanism. MD simulations predict an 11% increase in sensitivity due to membrane orientation, while DFT calculations predict an increase in fluorescence quantum yield, but a decrease in sensitivity due to a decrease in rate of PeT. We confirm these predictions by synthesizing a new VF dye and demonstrating that it displays the expected improvements by doubling the brightness and retaining similar sensitivity to prior VF dyes. Combining theoretical predictions and experimental validation has resulted in the synthesis of the highest signal-to-noise green VF dye to date. We use this new voltage indicator to monitor the electrophysiological maturation of human embryonic stem cell-derived medium spiny neurons. </p>


2019 ◽  
Vol 15 (4) ◽  
pp. 443-466 ◽  
Author(s):  
Mahya Karami Mosammam ◽  
Mohammad Reza Ganjali ◽  
Mona Habibi-Kool-Gheshlaghi ◽  
Farnoush Faridbod

Background: Catecholamine drugs are a family of electroactive pharmaceutics, which are widely analyzed through electrochemical methods. However, for low level online determination and monitoring of these compounds, which is very important for clinical and biological studies, modified electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials have been widely used as electrode modifies for these families during the years. Among them, graphene and its family, due to their remarkable properties in electrochemistry, were extensively used in modification of electrochemical sensors. Objective: In this review, working electrodes which have been modified with graphene and its derivatives and applied for electroanalyses of some important catecholamine drugs are considered.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Wei-Nan Liu ◽  
Rui Chen ◽  
Wei-Yi Shi ◽  
Ke-Bo Zeng ◽  
Fu-Li Zhao ◽  
...  

AbstractSelective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectional reflection sidebands, in all-dielectric cascaded subwavelength meta-gratings. The inherent collective resonance of waveguide-array modes and thin film approximation of meta-grating are employed as the design strategy. A unity transmission peak, locating at the incident angle of 44.4° and the center wavelength of 1550 nm, is demonstrated in a silicon meta-filter consisting of two-layer silicon rectangular meta-grating. These findings provide possibilities in cascaded meta-gratings spectroscopic design and alternative utilities for high signal-to-noise ratio applications in focus-free spatial filtering and anti-noise systems in telecommunications.


2016 ◽  
Vol 7 (2) ◽  
pp. 381 ◽  
Author(s):  
Lukas B. Gromann ◽  
Dirk Bequé ◽  
Kai Scherer ◽  
Konstantin Willer ◽  
Lorenz Birnbacher ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 6328-6331
Author(s):  
Su Zhen Shi ◽  
Yi Chen Zhao ◽  
Li Biao Yang ◽  
Yao Tang ◽  
Juan Li

The LIFT technology has applied in process of denoising to ensure the imaging precision of minor faults and structure in 3D coalfield seismic processing. The paper focused on the denoising process in two study areas where the LIFT technology is used. The separation of signal and noise is done firstly. Then denoising would be done in the noise data. The Data of weak effective signal that is from the noise data could be blended with the original effective signal to reconstruct the denoising data, so the result which has high signal-to-noise ratio and preserved amplitude is acquired. Thus the fact shows that LIFT is an effective denoising method for 3D seismic in coalfield and could be used widely in other work area.


1965 ◽  
Vol 9 (4) ◽  
pp. 264-273
Author(s):  
R. Van Blerkom ◽  
R. E. Sears ◽  
D. G. Freeman

2013 ◽  
Vol 770 ◽  
pp. 319-322 ◽  
Author(s):  
Piya Kovintavewat ◽  
Santi Koonkarnkhai ◽  
Aimamorn Suvichakorn

During hard disk drive (HDD) testing process, the magneto-resistive read (MR) head is analyzed and checked if the head is defective or not. Baseline popping (BLP) is one of the crucial problems caused by head instability, whose effect can distort the readback signal to the extent of causing possible sector read failure. Without BLP detection algorithm, the defective read head might pass through HDD assembling process, thus producing an unreliable HDD. This situation must be prevented so as to retain customer satisfaction. This paper proposes a simple (but efficient) BLP detection algorithm for perpendicular magnetic recording systems. Results show that the proposed algorithm outperforms the conventional one in terms of both the percentage of detection and the percentage of false alarm, when operating at high signal-to-noise ratio.


Sign in / Sign up

Export Citation Format

Share Document