A Method for Efficient Implementation of a Radial-Based Noise Power Estimator for Weather Radars

Author(s):  
Martin Hurtado

AbstractIn a previous work, a weather radar algorithm with low computational cost has been developed to estimate the background noise power from the data collected at each radial. The algorithm consists of a sequence of steps designed to identify signal-free range volumes which are subsequently used to estimate the noise power. In this paper, we derive compact-closed form expressions to replace the numerical formulations used in the first two steps of the algorithm proposed in the original paper. The goal is to facilitate efficient implementation of the algorithm.

Author(s):  
VN Nikitina ◽  
GG Lyashko ◽  
NI Kalinina ◽  
EN Dubrovskaya ◽  
VP Plekhanov

Summary. Introduction: Location of weather surveillance radars near settlements, in residential areas and on airport premises makes it important to ensure safe levels of electromagnetic fields (EMF) when operating these radio transmitters. EMF maximum permissible levels for weather radars developed in the 1980s are outdated. Our objective was to analyze modern weather surveillance radars to develop proposals for improvement of radar-generated radiofrequency field monitoring. Materials and methods: We studied trends in meteorological radiolocation and technical characteristics of modern weather radars for atmospheric sensing and weather alerts, analyzed regulations for EMF measurements and hygienic assessment, and measured radiofrequency fields produced by weather radar antennas in open areas and at workplaces of operators. Results: We established that modern types of weather radars used in upper-air sensing systems and storm warning networks differ significantly in terms of technical characteristics and operating modes from previous generations. Developed in the 1980s, current hygienic standards for human exposures to radiofrequency fields from weather radar antennas are obsolete. Conclusions: It is essential to develop an up-to-date regulatory and method document specifying estimation and instrumental monitoring of EMF levels generated by weather radars and measuring instruments for monitoring of pulse-modulated electromagnetic radiation.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 645
Author(s):  
Muhammad Farooq ◽  
Sehrish Sarfraz ◽  
Christophe Chesneau ◽  
Mahmood Ul Hassan ◽  
Muhammad Ali Raza ◽  
...  

Expectiles have gained considerable attention in recent years due to wide applications in many areas. In this study, the k-nearest neighbours approach, together with the asymmetric least squares loss function, called ex-kNN, is proposed for computing expectiles. Firstly, the effect of various distance measures on ex-kNN in terms of test error and computational time is evaluated. It is found that Canberra, Lorentzian, and Soergel distance measures lead to minimum test error, whereas Euclidean, Canberra, and Average of (L1,L∞) lead to a low computational cost. Secondly, the performance of ex-kNN is compared with existing packages er-boost and ex-svm for computing expectiles that are based on nine real life examples. Depending on the nature of data, the ex-kNN showed two to 10 times better performance than er-boost and comparable performance with ex-svm regarding test error. Computationally, the ex-kNN is found two to five times faster than ex-svm and much faster than er-boost, particularly, in the case of high dimensional data.


2021 ◽  
Vol 7 (6) ◽  
pp. 99
Author(s):  
Daniela di Serafino ◽  
Germana Landi ◽  
Marco Viola

We are interested in the restoration of noisy and blurry images where the texture mainly follows a single direction (i.e., directional images). Problems of this type arise, for example, in microscopy or computed tomography for carbon or glass fibres. In order to deal with these problems, the Directional Total Generalized Variation (DTGV) was developed by Kongskov et al. in 2017 and 2019, in the case of impulse and Gaussian noise. In this article we focus on images corrupted by Poisson noise, extending the DTGV regularization to image restoration models where the data fitting term is the generalized Kullback–Leibler divergence. We also propose a technique for the identification of the main texture direction, which improves upon the techniques used in the aforementioned work about DTGV. We solve the problem by an ADMM algorithm with proven convergence and subproblems that can be solved exactly at a low computational cost. Numerical results on both phantom and real images demonstrate the effectiveness of our approach.


2021 ◽  
pp. 107650
Author(s):  
Giro Candelario ◽  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

2011 ◽  
Vol 44 (1) ◽  
pp. 5573-5578
Author(s):  
M. Abbas Turki ◽  
D. Esqueda Merino ◽  
K. Kasper ◽  
C. Durieu

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5038
Author(s):  
Kosuke Shima ◽  
Masahiro Yamaguchi ◽  
Takumi Yoshida ◽  
Takanobu Otsuka

IoT-based measurement systems for manufacturing have been widely implemented. As components that can be implemented at low cost, BLE beacons have been used in several systems developed in previous research. In this work, we focus on the Kanban system, which is a measure used in manufacturing strategy. The Kanban system emphasizes inventory management and is used to produce only required amounts. In the Kanban system, the Kanban cards are rotated through the factory along with the products, and when the products change to a different process route, the Kanban card is removed from the products and the products are assigned to another Kanban. For this reason, a single Kanban cannot trace products from plan to completion. In this work, we propose a system that uses a Bluetooth low energy (BLE) beacon to connect Kanbans in different routes but assigned to the same products. The proposed method estimates the beacon status of whether the Kanban is inside or outside a postbox, which can then be computed by a micro controller at low computational cost. In addition, the system connects the Kanbans using the beacons as paired connection targets. In an experiment, we confirmed that the system connected 70% of the beacons accurately. We also confirmed that the system could connect the Kanbans at a small implementation cost.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Yun-Hua Wu ◽  
Lin-Lin Ge ◽  
Feng Wang ◽  
Bing Hua ◽  
Zhi-Ming Chen ◽  
...  

In order to satisfy the real-time requirement of spacecraft autonomous navigation using natural landmarks, a novel algorithm called CSA-SURF (chessboard segmentation algorithm and speeded up robust features) is proposed to improve the speed without loss of repeatability performance of image registration progress. It is a combination of chessboard segmentation algorithm and SURF. Here, SURF is used to extract the features from satellite images because of its scale- and rotation-invariant properties and low computational cost. CSA is based on image segmentation technology, aiming to find representative blocks, which will be allocated to different tasks to speed up the image registration progress. To illustrate the advantages of the proposed algorithm, PCA-SURF, which is the combination of principle component analysis and SURF, is also analyzed in this paper for comparison. Furthermore, random sample consensus (RANSAC) algorithm is applied to eliminate the false matches for further accuracy improvement. The simulation results show that the proposed strategy obtains good results, especially in scaling and rotation variation. Besides, CSA-SURF decreased 50% of the time in extraction and 90% of the time in matching without losing the repeatability performance by comparing with SURF algorithm. The proposed method has been demonstrated as an alternative way for image registration of spacecraft autonomous navigation using natural landmarks.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
M. Giselle Fernández-Godino ◽  
S. Balachandar ◽  
Raphael T. Haftka

When simulations are expensive and multiple realizations are necessary, as is the case in uncertainty propagation, statistical inference, and optimization, surrogate models can achieve accurate predictions at low computational cost. In this paper, we explore options for improving the accuracy of a surrogate if the modeled phenomenon presents symmetries. These symmetries allow us to obtain free information and, therefore, the possibility of more accurate predictions. We present an analytical example along with a physical example that has parametric symmetries. Although imposing parametric symmetries in surrogate models seems to be a trivial matter, there is not a single way to do it and, furthermore, the achieved accuracy might vary. We present four different ways of using symmetry in surrogate models. Three of them are straightforward, but the fourth is original and based on an optimization of the subset of points used. The performance of the options was compared with 100 random designs of experiments (DoEs) where symmetries were not imposed. We found that each of the options to include symmetries performed the best in one or more of the studied cases and, in all cases, the errors obtained imposing symmetries were substantially smaller than the worst cases among the 100. We explore the options for using symmetries in two surrogates that present different challenges and opportunities: Kriging and linear regression. Kriging is often used as a black box; therefore, we consider approaches to include the symmetries without changes in the main code. On the other hand, since linear regression is often built by the user; owing to its simplicity, we consider also approaches that modify the linear regression basis functions to impose the symmetries.


Author(s):  
Maddalena Cavicchioli

Abstract We derive sufficient conditions for the existence of second and fourth moments of Markov switching multivariate generalized autoregressive conditional heteroscedastic processes in the general vector specification. We provide matrix expressions in closed form for such moments, which are obtained by using a Markov switching vector autoregressive moving-average representation of the initial process. These expressions are shown to be readily programmable in addition of greatly reducing the computational cost. As theoretical applications of the results, we derive the spectral density matrix of the squares and cross products, propose a new definition of multivariate kurtosis measure to recognize heavy-tailed features in financial real data, and provide a matrix expression in closed form of the impulse-response function for the volatility. An empirical example illustrates the results.


Sign in / Sign up

Export Citation Format

Share Document