Measurement of small-scale surface velocity and turbulent kinetic energy dissipation rates using infrared imaging

Author(s):  
Shelby Metoyer ◽  
Mohammad Barzegar ◽  
Darek Bogucki ◽  
Brian K. Haus ◽  
Mingming Shao

AbstractShort range infrared (IR) observations of ocean surface reveal complicated spatially varying and evolving structures. Here we present an approach to use spatially correlated time-series IR images, over a time scale of one tenth of a second, of the water surface to derive underlying surface velocity and turbulence fields. The approach here was tested in a laboratory using grid-generated turbulence and a heater assembly. The technique was compared with in situ measurements to validate our IR derived remote measurements. The IR measured turbulent kinetic energy (TKE) dissipation rates were consistent with in situ measured dissipation using a microstructure profiler (VMP). We used measurements of the gradient of the velocity field to calculate TKE dissipation rates at the surface. Based on theoretical and experimental retrievals and designed an approach for oceanic field IR applications.

2009 ◽  
Vol 9 (7) ◽  
pp. 2335-2353 ◽  
Author(s):  
W. W. Grabowski ◽  
L.-P. Wang

Abstract. A large set of rising adiabatic parcel simulations is executed to investigate the combined diffusional and accretional growth of cloud droplets in maritime and continental conditions, and to assess the impact of enhanced droplet collisions due to small-scale cloud turbulence. The microphysical model applies the droplet number density function to represent spectral evolution of cloud and rain/drizzle drops, and various numbers of bins in the numerical implementation, ranging from 40 to 320. Simulations are performed applying two traditional gravitational collection kernels and two kernels representing collisions of cloud droplets in the turbulent environment, with turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3. The overall result is that the rain initiation time significantly depends on the number of bins used, with earlier initiation of rain when the number of bins is low. This is explained as a combination of the increase of the width of activated droplet spectrum and enhanced numerical spreading of the spectrum during diffusional and collisional growth when the number of model bins is low. Simulations applying around 300 bins seem to produce rain at times which no longer depend on the number of bins, but the activation spectra are unrealistically narrow. These results call for an improved representation of droplet activation in numerical models of the type used in this study. Despite the numerical effects that impact the rain initiation time in different simulations, the turbulent speedup factor, the ratio of the rain initiation time for the turbulent collection kernel and the corresponding time for the gravitational kernel, is approximately independent of aerosol characteristics, parcel vertical velocity, and the number of bins used in the numerical model. The turbulent speedup factor is in the range 0.75–0.85 and 0.60–0.75 for the turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3, respectively.


2016 ◽  
Vol 33 (4) ◽  
pp. 817-837 ◽  
Author(s):  
Justine M. McMillan ◽  
Alex E. Hay ◽  
Rolf G. Lueck ◽  
Fabian Wolk

AbstractThe ability to estimate the rate of dissipation (ε) of turbulent kinetic energy at middepth in a high-speed tidal channel using broadband acoustic Doppler current profilers (ADCPs) is assessed by making comparisons to direct measurements of ε obtained using shear probes mounted on a streamlined underwater buoy. The investigation was carried out in Grand Passage, Nova Scotia, Canada, where the depth-averaged flow speed reached 2 m s−1 and the Reynolds number was 8 × 107. The speed bin–averaged dissipation rates estimated from the ADCP data agree with the shear probe data to within a factor of 2. Both the ADCP and the shear probe measurements indicate a linear dependence of ε on the cube of the flow speed during flood and much lower dissipation rates during ebb. The ebb–flood asymmetry and the small-scale intermittency in ε are also apparent in the lognormal distributions of the shear probe data. Possible sources of bias and error in the ε estimates are investigated, and the most likely causes of the discrepancy between the ADCP and shear probe estimates are the cross-channel separation of the instruments and the high degree of spatial variability that exists in the channel.


2008 ◽  
Vol 8 (4) ◽  
pp. 14717-14763 ◽  
Author(s):  
W. W. Grabowski ◽  
L.-P. Wang

Abstract. A large set of rising adiabatic parcel simulations is executed to investigate the combined diffusional and accretional growth of cloud droplets in maritime and continental conditions, and to assess the impact of enhanced droplet collisions due to small-scale cloud turbulence. The microphysical model applies the droplet number density function to represent spectral evolution of cloud and rain/drizzle drops, and various numbers of bins in the numerical implementation, ranging from 40 to 320. Simulations are performed applying two traditional gravitational collection kernels and two kernels representing collisions of cloud droplets in the turbulent environment, with turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3. The overall result is that the rain initiation time significantly depends on the number of bins used, with earlier initiation of rain when the number of bins is low. This is explained as a combination of the increase of the width of activated droplet spectrum and enhanced numerical spreading of the spectrum during diffusional and collisional growth when the number of model bins is low. Simulations applying around 300 bins seem to produce rain at times which no longer depend on the number of bins, but the activation spectra are unrealistically narrow. These results call for an improved representation of droplet activation in numerical models of the type used in this study. Despite the numerical effects that impact the rain initiation time in different simulations, the turbulent speedup factor, the ratio of the rain initiation time for the turbulent collection kernel and the corresponding time for the gravitational kernel, is approximately independent of aerosol characteristics, parcel vertical velocity, and the number of bins used in the numerical model. The turbulent speedup factor is in the range 0.75–0.85 and 0.60–0.75 for the turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3, respectively.


2019 ◽  
Vol 36 (10) ◽  
pp. 1917-1932 ◽  
Author(s):  
Kimberly Huguenard ◽  
Kris Bears ◽  
Brandon Lieberthal

AbstractIntermittent turbulence behavior has a number of implications for field sampling, namely, that if undersampled, it can result in over- or underestimates of turbulent kinetic energy (TKE) dissipation rates. Sampling thresholds and common distributions have previously been defined for oceanic environments, but estuaries remain relatively underrepresented. Utilizing vertical microstructure profilers is a robust way to directly measure TKE dissipation rates; however, microstructure sensors are delicate and conducting a limited number of profiles in a burst is desirable. In this work, a statistical framework is used to characterize intermittency in a partially mixed estuary. In particular, a multiple comparison test is proposed to evaluate the number of profiles required to sufficiently represent TKE dissipation averages. The technique is tested on a microstructure dataset from the Damariscotta River in Maine, which covers seasonal and fortnightly time scales. The Damariscotta River features a variety of bathymetric and channel complexities, which provide the opportunity to examine intermittency as it relates to different processes. Small-scale intermittency is prominent during stratified conditions in shallow locations as well as near channel-shoal morphology, channel bends, and constrictions.


2008 ◽  
Vol 604 ◽  
pp. 165-174 ◽  
Author(s):  
XAVIER CAPET ◽  
PATRICE KLEIN ◽  
BACH LIEN HUA ◽  
GUILLAUME LAPEYRE ◽  
JAMES C. MCWILLIAMS

The relevance of surface quasi-geostrophic dynamics (SQG) to the upper ocean and the atmospheric tropopause has been recently demonstrated in a wide range of conditions. Within this context, the properties of SQG in terms of kinetic energy (KE) transfers at the surface are revisited and further explored. Two well-known and important properties of SQG characterize the surface dynamics: (i) the identity between surface velocity and density spectra (when appropriately scaled) and (ii) the existence of a forward cascade for surface density variance. Here we show numerically and analytically that (i) and (ii) do not imply a forward cascade of surface KE (through the advection term in the KE budget). On the contrary, advection by the geostrophic flow primarily induces an inverse cascade of surface KE on a large range of scales. This spectral flux is locally compensated by a KE source that is related to surface frontogenesis. The subsequent spectral budget resembles those exhibited by more complex systems (primitive equations or Boussinesq models) and observations, which strengthens the relevance of SQG for the description of ocean/atmosphere dynamics near vertical boundaries. The main weakness of SQG however is in the small-scale range (scales smaller than 20–30 km in the ocean) where it poorly represents the forward KE cascade observed in non-QG numerical simulations.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1185-1206 ◽  
Author(s):  
Iván Pérez-Santos ◽  
Leonardo Castro ◽  
Lauren Ross ◽  
Edwin Niklitschek ◽  
Nicolás Mayorga ◽  
...  

Abstract. The aggregation of plankton species along fjords can be linked to physical properties and processes such as stratification, turbulence and oxygen concentration. The goal of this study is to determine how water column properties and turbulent mixing affect the horizontal and vertical distributions of macrozooplankton along the only northern Patagonian fjord known to date, where hypoxic conditions occur in the water column. Acoustic Doppler current profiler moorings, scientific echo-sounder transects and in situ plankton abundance measurements were used to study macrozooplankton assemblages and migration patterns along Puyuhuapi Fjord and Jacaf Channel in Chilean Patagonia. The dissipation of turbulent kinetic energy was quantified through vertical microstructure profiles collected throughout time in areas with high macrozooplankton concentrations. The acoustic records and in situ macrozooplankton data revealed diel vertical migrations (DVM) of siphonophores, chaetognaths and euphausiids. In particular, a dense biological backscattering layer was observed along Puyuhuapi Fjord between the surface and the top of the hypoxic boundary layer (∼100 m), which limited the vertical distribution of most macrozooplankton and their DVM, generating a significant reduction of habitat. Aggregations of macrozooplankton and fishes were most abundant around a submarine sill in Jacaf Channel. In this location macrozooplankton were distributed throughout the water column (0 to ∼200 m), with no evidence of a hypoxic boundary due to the intense mixing near the sill. In particular, turbulence measurements taken near the sill indicated high dissipation rates of turbulent kinetic energy (ε∼10-5 W kg−1) and vertical diapycnal eddy diffusivity (Kρ∼10-3 m2 s−1). The elevated vertical mixing ensures that the water column is well oxygenated (3–6 mL L−1, 60 %–80 % saturation), creating a suitable environment for macrozooplankton and fish aggregations. Turbulence induced by tidal flow over the sill apparently enhances the interchange of nutrients and oxygen concentrations with the surface layer, creating a productive environment for many marine species, where the prey–predator relationship might be favored.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


1997 ◽  
Vol 334 ◽  
pp. 61-86 ◽  
Author(s):  
PAUL PICCIRILLO ◽  
CHARLES W. VAN ATTA

Experiments were carried out in a new type of stratified flow facility to study the evolution of turbulence in a mean flow possessing both uniform stable stratification and uniform mean shear.The new facility is a thermally stratified wind tunnel consisting of ten independent supply layers, each with its own blower and heaters, and is capable of producing arbitrary temperature and velocity profiles in the test section. In the experiments, four different sized turbulence-generating grids were used to study the effect of different initial conditions. All three components of the velocity were measured, along with the temperature. Root-mean-square quantities and correlations were measured, along with their corresponding power and cross-spectra.As the gradient Richardson number Ri = N2/(dU/dz)2 was increased, the downstream spatial evolution of the turbulent kinetic energy changed from increasing, to stationary, to decreasing. The stationary value of the Richardson number, Ricr, was found to be an increasing function of the dimensionless shear parameter Sq2/∈ (where S = dU/dz is the mean velocity shear, q2 is the turbulent kinetic energy, and ∈ is the viscous dissipation).The turbulence was found to be highly anisotropic, both at the small scales and at the large scales, and anisotropy was found to increase with increasing Ri. The evolution of the velocity power spectra for Ri [les ] Ricr, in which the energy of the large scales increases while the energy in the small scales decreases, suggests that the small-scale anisotropy is caused, or at least amplified, by buoyancy forces which reduce the amount of spectral energy transfer from large to small scales. For the largest values of Ri, countergradient buoyancy flux occurred for the small scales of the turbulence, an effect noted earlier in the numerical results of Holt et al. (1992), Gerz et al. (1989), and Gerz & Schumann (1991).


Sign in / Sign up

Export Citation Format

Share Document