scholarly journals Surface kinetic energy transfer in surface quasi-geostrophic flows

2008 ◽  
Vol 604 ◽  
pp. 165-174 ◽  
Author(s):  
XAVIER CAPET ◽  
PATRICE KLEIN ◽  
BACH LIEN HUA ◽  
GUILLAUME LAPEYRE ◽  
JAMES C. MCWILLIAMS

The relevance of surface quasi-geostrophic dynamics (SQG) to the upper ocean and the atmospheric tropopause has been recently demonstrated in a wide range of conditions. Within this context, the properties of SQG in terms of kinetic energy (KE) transfers at the surface are revisited and further explored. Two well-known and important properties of SQG characterize the surface dynamics: (i) the identity between surface velocity and density spectra (when appropriately scaled) and (ii) the existence of a forward cascade for surface density variance. Here we show numerically and analytically that (i) and (ii) do not imply a forward cascade of surface KE (through the advection term in the KE budget). On the contrary, advection by the geostrophic flow primarily induces an inverse cascade of surface KE on a large range of scales. This spectral flux is locally compensated by a KE source that is related to surface frontogenesis. The subsequent spectral budget resembles those exhibited by more complex systems (primitive equations or Boussinesq models) and observations, which strengthens the relevance of SQG for the description of ocean/atmosphere dynamics near vertical boundaries. The main weakness of SQG however is in the small-scale range (scales smaller than 20–30 km in the ocean) where it poorly represents the forward KE cascade observed in non-QG numerical simulations.

2019 ◽  
Vol 7 (6) ◽  
pp. 171 ◽  
Author(s):  
Guoheng Wu ◽  
Zhongyue Lu ◽  
Zirong Luo ◽  
Jianzhong Shang ◽  
Chongfei Sun ◽  
...  

Nowadays, drifters are used for a wide range of applications for researching and exploring the sea. However, the power constraint makes it difficult for their sampling intervals to be smaller, meaning that drifters cannot transmit more accurate measurement data to satellites. Furthermore, due to the power constraint, a modern Surface Velocity Program (SVP) drifter lives an average of 400 days before ceasing transmission. To overcome the power constraint of SVP drifters, this article proposes an adaptively counter-rotating wave energy converter (ACWEC) to supply power for drifters. The ACWEC has the advantages of convenient modular integration, simple conversion process, and minimal affection by the crucial sea environment. This article details the design concept and working principle, and the interaction between the wave energy converter (WEC) and wave is presented based on plane wave theory. To verify the feasibility of the WEC, the research team carried out a series of experiments in a wave tank with regular and irregular waves. Through experiments, it was found that the power and efficiency of the ACWEC are greatly influenced by parameters such as wave height and wave frequency. The maximum output power of the small scale WEC in a wave tank is 6.36 W, which allows drifters to detect ocean data more frequently and continuously.


2012 ◽  
Vol 713 ◽  
pp. 86-108 ◽  
Author(s):  
Pierre Augier ◽  
Jean-Marc Chomaz ◽  
Paul Billant

AbstractWe investigate the spectral properties of the turbulence generated during the nonlinear evolution of a Lamb–Chaplygin dipole in a stratified fluid for a high Reynolds number $Re= 28\hspace{0.167em} 000$ and a wide range of horizontal Froude number ${F}_{h} \in [0. 0225~0. 135] $ and buoyancy Reynolds number $\mathscr{R}= Re{{F}_{h} }^{2} \in [14~510] $. The numerical simulations use a weak hyperviscosity and are therefore almost direct numerical simulations (DNS). After the nonlinear development of the zigzag instability, both shear and gravitational instabilities develop and lead to a transition to small scales. A spectral analysis shows that this transition is dominated by two kinds of transfer: first, the shear instability induces a direct non-local transfer toward horizontal wavelengths of the order of the buoyancy scale ${L}_{b} = U/ N$, where $U$ is the characteristic horizontal velocity of the dipole and $N$ the Brunt–Väisälä frequency; second, the destabilization of the Kelvin–Helmholtz billows and the gravitational instability lead to small-scale weakly stratified turbulence. The horizontal spectrum of kinetic energy exhibits a ${{\varepsilon }_{K} }^{2/ 3} { k}_{h}^{\ensuremath{-} 5/ 3} $ power law (where ${k}_{h} $ is the horizontal wavenumber and ${\varepsilon }_{K} $ is the dissipation rate of kinetic energy) from ${k}_{b} = 2\lrm{\pi} / {L}_{b} $ to the dissipative scales, with an energy deficit between the integral scale and ${k}_{b} $ and an excess around ${k}_{b} $. The vertical spectrum of kinetic energy can be expressed as $E({k}_{z} )= {C}_{N} {N}^{2} { k}_{z}^{\ensuremath{-} 3} + C{{\varepsilon }_{K} }^{2/ 3} { k}_{z}^{\ensuremath{-} 5/ 3} $ where ${C}_{N} $ and $C$ are two constants of order unity and ${k}_{z} $ is the vertical wavenumber. It is therefore very steep near the buoyancy scale with an ${N}^{2} { k}_{z}^{\ensuremath{-} 3} $ shape and approaches the ${{\varepsilon }_{K} }^{2/ 3} { k}_{z}^{\ensuremath{-} 5/ 3} $ spectrum for ${k}_{z} \gt {k}_{o} $, ${k}_{o} $ being the Ozmidov wavenumber, which is the cross-over between the two scaling laws. A decomposition of the vertical spectra depending on the horizontal wavenumber value shows that the ${N}^{2} { k}_{z}^{\ensuremath{-} 3} $ spectrum is associated with large horizontal scales $\vert {\mathbi{k}}_{h} \vert \lt {k}_{b} $ and the ${{\varepsilon }_{K} }^{2/ 3} { k}_{z}^{\ensuremath{-} 5/ 3} $ spectrum with the scales $\vert {\mathbi{k}}_{h} \vert \gt {k}_{b} $.


Author(s):  
Mohammad Khalid Hossen ◽  
Asokan Mulayath Variyath ◽  
Jahrul M Alam

In large eddy simulation (LES) of turbulent flows, the most critical dynamical processes to be considered by dynamic subgrid models to account for an average cascade of kinetic energy from the largest to the smallest scales of the flow is not fully clear. Furthermore, evidence of vortex stretching being the primary mechanism of the cascade is not out of the question. In this article, we study some essential statistical characteristics of vortex stretching and its role in dynamic approaches of modeling subgrid-scale turbulence. We have compared the interaction of subgrid stresses with the filtered quantities among four models using invariants of the velocity gradient tensor. This technique is a single unified approach to studying a wide range of length scales in the turbulent flow. In addition, it also provides a rational basis for the statistical characteristics a subgrid model must serve in physical space to ensure an appropriate cascade of kinetic energy. Results indicate that the stretching mechanism extracts energy from the large-scale straining motion and passes it onto small-scale stretched vortices.


2012 ◽  
Vol 42 (7) ◽  
pp. 1242-1248 ◽  
Author(s):  
Xinfeng Liang ◽  
Andreas M. Thurnherr

Abstract Mesoscale eddies are ubiquitous in the World Ocean and dominate the energy content on subinertial time scales. Recent theoretical and numerical studies suggest a connection between mesoscale eddies and diapycnal mixing in the deep ocean, especially near rough topography in regions of strong geostrophic flow. However, unambiguous observational evidence for such a connection has not yet been found, and it is still unclear what physical processes are responsible for transferring energy from mesoscale to small-scale processes. Here, the authors present observations demonstrating that finescale variability near the crest of the East Pacific Rise is strongly modulated by low-frequency geostrophic flows, including those due to mesoscale eddies. During times of strong subinertial flows, the authors observed elevated kinetic energy on vertical scales <50 m and in the near-inertial band, predominantly upward-propagating near-inertial waves, and increased incidence of layers with Richardson number . In contrast, during times of weak subinertial flows, kinetic energy in the finescale and near-inertial bands is lower, Ri values are higher, and near-inertial waves propagate predominantly downward through the water column. Diapycnal diffusivities estimated indirectly from a simple Ri-based parameterization are consistent with results from a tracer-release experiment and a microstructure survey bracketing the mooring measurements. These observations are consistent with energy transfer (a “cascade”) from subinertial flows, including mesoscale eddies, to near-inertial oscillations, turbulence, and mixing. This interpretation suggests that, in addition to topographic roughness and tidal forcing, parameterization of deep-ocean mixing should also take subinertial flows into account. The findings presented here are expected to be useful for validating and improving numerical-model parameterizations of turbulence and mixing in the ocean.


Author(s):  
Shelby Metoyer ◽  
Mohammad Barzegar ◽  
Darek Bogucki ◽  
Brian K. Haus ◽  
Mingming Shao

AbstractShort range infrared (IR) observations of ocean surface reveal complicated spatially varying and evolving structures. Here we present an approach to use spatially correlated time-series IR images, over a time scale of one tenth of a second, of the water surface to derive underlying surface velocity and turbulence fields. The approach here was tested in a laboratory using grid-generated turbulence and a heater assembly. The technique was compared with in situ measurements to validate our IR derived remote measurements. The IR measured turbulent kinetic energy (TKE) dissipation rates were consistent with in situ measured dissipation using a microstructure profiler (VMP). We used measurements of the gradient of the velocity field to calculate TKE dissipation rates at the surface. Based on theoretical and experimental retrievals and designed an approach for oceanic field IR applications.


2008 ◽  
Vol 38 (8) ◽  
pp. 1748-1763 ◽  
Author(s):  
Patrice Klein ◽  
Bach Lien Hua ◽  
Guillaume Lapeyre ◽  
Xavier Capet ◽  
Sylvie Le Gentil ◽  
...  

Abstract The authors examine the turbulent properties of a baroclinically unstable oceanic flow using primitive equation (PE) simulations with high resolution (in both horizontal and vertical directions). Resulting dynamics in the surface layers involve large Rossby numbers and significant vortical asymmetries. Furthermore, the ageostrophic divergent motions associated with small-scale surface frontogenesis are shown to significantly alter the nonlinear transfers of kinetic energy and consequently the time evolution of the surface dynamics. Such impact of the ageostrophic motions explains the emergence of the significant cyclone–anticyclone asymmetry and of a strong restratification in the upper layers, which are not allowed by the quasigeostrophic (QG) or surface quasigeostrophic (SQG) theory. However, despite this strong ageostrophic character, some of the main surface properties are surprisingly still close to the surface quasigeostrophic equilibrium. They include a noticeable shallow (≈k−2) velocity spectrum as well as a conspicuous local spectral relationship between surface kinetic energy, sea surface height, and density variance over a large range of scales (from 400 to 4 km). Furthermore, surface velocities can be remarkably diagnosed from only the surface density using SQG relations. This suggests that the validity of some specific SQG relations extends to dynamical regimes with large Rossby numbers. The interior dynamics, on the other hand, strongly differ from the surface dynamics, involving a small Rossby number, a steep (≈k−4) velocity spectrum, and a somewhat steeper density spectrum. The compensation of the surface restratification by a destratification at depth confirms a connection between the surface and the interior induced by the small-scale divergent motions.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Author(s):  
Michele Righi ◽  
Giacomo Moretti ◽  
David Forehand ◽  
Lorenzo Agostini ◽  
Rocco Vertechy ◽  
...  

AbstractDielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable promise in replacing expensive and inefficient power take-off systems with cheap direct-drive generators. This paper introduces a concept of a pressure differential wave energy converter, equipped with a DEG power take-off operating in direct contact with sea water. The device consists of a closed submerged air chamber, with a fluid-directing duct and a deformable DEG power take-off mounted on its top surface. The DEG is cyclically deformed by wave-induced pressure, thus acting both as the power take-off and as a deformable interface with the waves. This layout allows the partial balancing of the stiffness due to the DEG’s elasticity with the negative hydrostatic stiffness contribution associated with the displacement of the water column on top of the DEG. This feature makes it possible to design devices in which the DEG exhibits large deformations over a wide range of excitation frequencies, potentially achieving large power capture in a wide range of sea states. We propose a modelling approach for the system that relies on potential-flow theory and electroelasticity theory. This model makes it possible to predict the system dynamic response in different operational conditions and it is computationally efficient to perform iterative and repeated simulations, which are required at the design stage of a new WEC. We performed tests on a small-scale prototype in a wave tank with the aim of investigating the fluid–structure interaction between the DEG membrane and the waves in dynamical conditions and validating the numerical model. The experimental results proved that the device exhibits large deformations of the DEG power take-off over a broad range of monochromatic and panchromatic sea states. The proposed model demonstrates good agreement with the experimental data, hence proving its suitability and effectiveness as a design and prediction tool.


2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Marina Amadori ◽  
Virginia Zamparelli ◽  
Giacomo De Carolis ◽  
Gianfranco Fornaro ◽  
Marco Toffolon ◽  
...  

The SAR Doppler frequencies are directly related to the motion of the scatterers in the illuminated area and have already been used in marine applications to monitor moving water surfaces. Here we investigate the possibility of retrieving surface water velocity from SAR Doppler analysis in medium-size lakes. ENVISAT images of the test site (Lake Garda) are processed and the Doppler Centroid Anomaly technique is adopted. The resulting surface velocity maps are compared with the outputs of a hydrodynamic model specifically validated for the case study. Thermal images from MODIS Terra are used in support of the modeling results. The surface velocity retrieved from SAR is found to overestimate the numerical results and the existence of a bias is investigated. In marine applications, such bias is traditionally removed through Geophysical Model Functions (GMFs) by ascribing it to a fully developed wind waves spectrum. We found that such an assumption is not supported in our case study, due to the small-scale variations of topography and wind. The role of wind intensity and duration on the results from SAR is evaluated, and the inclusion of lake bathymetry and the SAR backscatter gradient is recommended for the future development of GMFs suitable for lake environments.


2019 ◽  
Vol 11 (8) ◽  
pp. 2400 ◽  
Author(s):  
Karthikeyan Mariappan ◽  
Deyi Zhou

Agriculture is the main sources of income for humans. Likewise, agriculture is the backbone of the Indian economy. In India, Tamil Nadu regional state has a wide range of possibilities to produce all varieties of organic products due to its diverse agro-climatic condition. This research aimed to identify the economics and efficiency of organic farming, and the possibilities to reduce farmers’ suicides in the Tamil Nadu region through the organic agriculture concept. The emphasis was on farmers, producers, researchers, and marketers entering the sustainable economy through organic farming by reducing input cost and high profit in cultivation. A survey was conducted to gather data. One way analysis of variance (ANOVA) has been used to test the hypothesis regards the cost and profit of rice production. The results showed that there was a significant difference in profitability between organic and conventional farming methods. It is very transparent that organic farming is the leading concept of sustainable agricultural development with better organic manures that can improve soil fertility, better yield, less input cost and better return than conventional farming. The study suggests that by reducing the cost of cultivation and get a marginal return through organic farming method to poor and small scale farmers will reduce socio-economic problems such as farmers’ suicides in the future of Indian agriculture.


Sign in / Sign up

Export Citation Format

Share Document