An Orography-Associated Extreme Rainfall Event during TiMREX: Initiation, Storm Evolution, and Maintenance

2012 ◽  
Vol 140 (8) ◽  
pp. 2555-2574 ◽  
Author(s):  
Weixin Xu ◽  
Edward J. Zipser ◽  
Yi-Leng Chen ◽  
Chuntao Liu ◽  
Yu-Chieng Liou ◽  
...  

Abstract This study investigates a long-duration mesoscale system with extremely heavy rainfall over southwest Taiwan during the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). This mesoscale convective system develops offshore and stays quasi-stationary over the upstream ocean and southwest coast of Taiwan. New convection keeps developing upstream offshore but decays or dies after moving into the island, dropping the heaviest rain over the upstream ocean and coastal regions. Warm, moist, unstable conditions and a low-level jet (LLJ) are found only over the upstream ocean, while the island of Taiwan is under the control of a weak cold pool. The LLJ is lifted upward at the boundary between the cold pool and LLJ. Most convective clusters supporting the long-lived rainy mesoscale system are initiated and develop along that boundary. The initiation and maintenance is thought to be a “back-building–quasi-stationary” process. The cold pool forms from previous persistent precipitation with a temperature depression of 2°–4°C in the lowest 500 m, while the high terrain in Taiwan is thought to trap the cold pool from spreading or moving. As a result, the orography of Taiwan is “extended” to the upstream ocean and plays an indirect effect on the long-duration mesoscale system.

2016 ◽  
Vol 144 (10) ◽  
pp. 3985-4006 ◽  
Author(s):  
Jong-Hoon Jeong ◽  
Dong-In Lee ◽  
Chung-Chieh Wang

In this study, an extreme rainfall-producing quasi-stationary mesoscale convective system (MCS) associated with the Changma front in southeastern South Korea is investigated using numerical simulations and sensitivity tests. A record-breaking rainfall amount was recorded in response to repeated initiation of new cells (i.e., back-building) over the same area for several hours. The aim of this study is to realistically simulate and analyze this extreme rainfall event to better understand an impact of the cold pool that leads to the quasi-stationary MCS over southeastern South Korea by using a convection-allowing-resolution (2 km) nonhydrostatic atmospheric model. The control experiment (CNTL) was successfully performed, yielding the quasi-stationary, back-building MCS at approximately the correct location and time. In the CNTL run, diabatic cooling due to evaporation of raindrops was responsible for the formation of the cold pool. The development of the cold pool was responsible for the deceleration of the propagating convective line, which played a role in the stalling of the MCS over southeastern South Korea. Moreover, new convective cells were repeatedly initiated in the region where an oncoming warm inflow met the leading edge of the cold pool and was uplifted. In an experiment without evaporative cooling (NOEVA), the simulated precipitation pattern was shifted to the northeast because the MCS became nonstationary without the cold pool. The cold pool had an essential role in the stationarity of the MCS, which resulted in extreme rainfall over the Busan metropolitan area.


2015 ◽  
Vol 72 (11) ◽  
pp. 4319-4336 ◽  
Author(s):  
Mitchell W. Moncrieff ◽  
Todd P. Lane

Abstract Part II of this study of long-lived convective systems in a tropical environment focuses on forward-tilted, downshear-propagating systems that emerge spontaneously from idealized numerical simulations. These systems differ in important ways from the standard mesoscale convective system that is characterized by a rearward-tilted circulation with a trailing stratiform region, an overturning updraft, and a mesoscale downdraft. In contrast to this standard mesoscale system, the downshear-propagating system considered here does not feature a mesoscale downdraft and, although there is a cold pool it is of secondary importance to the propagation and maintenance of the system. The mesoscale downdraft is replaced by hydraulic-jump-like ascent beneath an elevated, forward-tilted overturning updraft with negligible convective available potential energy. Therefore, the mesoscale circulation is sustained almost entirely by the work done by the horizontal pressure gradient and the kinetic energy available from environmental shear. This category of organization is examined by cloud-system-resolving simulations and approximated by a nonlinear archetypal model of the quasi-steady Lagrangian-mean mesoscale circulation.


2015 ◽  
Vol 3 (10) ◽  
pp. 6459-6489
Author(s):  
J.-H. Jeong ◽  
D.-I. Lee ◽  
C.-C. Wang ◽  
I.-S. Han

Abstract. An extreme rainfall-producing mesoscale convective system (MCS) associated with the Changma front in southeastern Korea was investigated using observational data. This event recorded historic rainfall and led to devastating flash floods and landslides in the Busan metropolitan area on 7 July 2009. The aim of the present study is to analyze and better understand the synoptic and mesoscale environment, and the behavior of quasi-stationary MCS causing extreme rainfall. Synoptic and mesoscale analyses indicate that the MCS and heavy rainfall occurred association with a stationary front which resembled a warm front in structure. A strong southwesterly low-level jet (LLJ) transported warm and humid air and supplied the moisture toward the front, and the air rose upwards above the frontal surface. As the moist air was conditionally unstable, repeated upstream initiation of deep convection by back-building occurred at the coastline, while old cells moved downstream parallel to the convective line with training effect. Because the motion of convective cells nearly opposed the backward propagation, the system as a whole moved slowly. The back-building behavior was linked to the convectively produced cold pool and its outflow boundary, which played an essential role in the propagation and maintenance of the rainfall system. As a result, the quasi-stationary MCS caused a prolonged duration of heavy rainfall, leading to extreme rainfall over the Busan metropolitan area.


2016 ◽  
Vol 16 (4) ◽  
pp. 927-939 ◽  
Author(s):  
Jong-Hoon Jeong ◽  
Dong-In Lee ◽  
Chung-Chieh Wang ◽  
In-Seong Han

Abstract. An extreme-rainfall-producing mesoscale convective system (MCS) associated with the Changma front in southeastern South Korea was investigated using observational data. This event recorded historic rainfall and led to devastating flash floods and landslides in the Busan metropolitan area on 7 July 2009. The aim of the present study is to analyse the influences for the synoptic and mesoscale environment, and the reasons that the quasi-stationary MCS causes extreme rainfall. Synoptic and mesoscale analyses indicate that the MCS and heavy rainfall occurred in association with a stationary front which resembled a warm front in structure. A strong southwesterly low-level jet (LLJ) transported warm and humid air and supplied the moisture toward the front, and the air rose upwards above the frontal surface. As the moist air was conditionally unstable, repeated upstream initiation of deep convection by back-building occurred at the coastline, while old cells moved downstream parallel to the convective line with training effect. Because the motion of convective cells nearly opposed the backward propagation, the system as a whole moved slowly. The back-building behaviour was linked to the convectively generated cold pool and its outflow boundary, which played a role in the propagation and maintenance of the rainfall system. As a result, the quasi-stationary MCS caused a prolonged duration of heavy rainfall, leading to extreme rainfall over the Busan metropolitan area.


2008 ◽  
Vol 136 (10) ◽  
pp. 3964-3986 ◽  
Author(s):  
Russ S. Schumacher ◽  
Richard H. Johnson

Observations and numerical simulations are used to investigate the atmospheric processes that led to extreme rainfall and resultant destructive flash flooding in eastern Missouri on 6–7 May 2000. In this event, a quasi-stationary mesoscale convective system (MCS) developed near a preexisting mesoscale convective vortex (MCV) in a very moist environment that included a strong low-level jet (LLJ). This nocturnal MCS produced in excess of 300 mm of rain in a small area to the southwest of St. Louis, Missouri. Operational model forecasts and simulations using a convective parameterization scheme failed to produce the observed rainfall totals for this event. However, convection-permitting simulations using the Weather Research and Forecasting Model were successful in reproducing the quasi-stationary organization and evolution of this MCS. In both observations and simulations, scattered elevated convective cells were repeatedly initiated 50–75 km upstream before merging into the mature MCS and contributing to the heavy rainfall. Lifting provided by the interaction between the LLJ and the MCV assisted in initiating and maintaining the convection. Simulations indicate that the MCS was long lived despite the lack of a convectively generated cold pool at the surface. Instead, a nearly stationary low-level gravity wave helped to organize the convection into a quasi-linear system that was conducive to extreme local rainfall amounts. Idealized simulations of convection in a similar environment show that such a low-level gravity wave is a response to diabatic heating and that the vertical wind profile featuring a strong reversal of the wind shear with height is responsible for keeping the wave nearly stationary. In addition, the convective system acted to reintensify the midlevel MCV and also caused a distinct surface low pressure center to develop in both the observed and simulated system.


2014 ◽  
Vol 142 (1) ◽  
pp. 141-162 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan Snook ◽  
Guifu Zhang

Abstract Doppler radar data are assimilated with an ensemble Kalman Filter (EnKF) in combination with a double-moment (DM) microphysics scheme in order to improve the analysis and forecast of microphysical states and precipitation structures within a mesoscale convective system (MCS) that passed over western Oklahoma on 8–9 May 2007. Reflectivity and radial velocity data from five operational Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band radars as well as four experimental Collaborative and Adaptive Sensing of the Atmosphere (CASA) X-band radars are assimilated over a 1-h period using either single-moment (SM) or DM microphysics schemes within the forecast ensemble. Three-hour deterministic forecasts are initialized from the final ensemble mean analyses using a SM or DM scheme, respectively. Polarimetric radar variables are simulated from the analyses and compared with polarimetric WSR-88D observations for verification. EnKF assimilation of radar data using a multimoment microphysics scheme for an MCS case has not previously been documented in the literature. The use of DM microphysics during data assimilation improves simulated polarimetric variables through differentiation of particle size distributions (PSDs) within the stratiform and convective regions. The DM forecast initiated from the DM analysis shows significant qualitative improvement over the assimilation and forecast using SM microphysics in terms of the location and structure of the MCS precipitation. Quantitative precipitation forecasting skills are also improved in the DM forecast. Better handling of the PSDs by the DM scheme is believed to be responsible for the improved prediction of the surface cold pool, a stronger leading convective line, and improved areal extent of stratiform precipitation.


2019 ◽  
Vol 147 (2) ◽  
pp. 495-517 ◽  
Author(s):  
Christopher A. Kerr ◽  
David J. Stensrud ◽  
Xuguang Wang

AbstractConvection intensity and longevity is highly dependent on the surrounding environment. Ensemble sensitivity analysis (ESA), which quantitatively and qualitatively interprets impacts of initial conditions on forecasts, is applied to very short-term (1–2 h) convective-scale forecasts for three cases during the Mesoscale Predictability Experiment (MPEX) in 2013. The ESA technique reveals several dependencies of individual convective storm evolution on their nearby environments. The three MPEX cases are simulated using a previously verified 36-member convection-allowing model (Δx = 3 km) ensemble created via the Weather Research and Forecasting (WRF) Model. Radar and other conventional observations are assimilated using an ensemble adjustment Kalman filter. The three cases include a mesoscale convective system (MCS) and both nontornadic and tornadic supercells. Of the many ESAs applied in this study, one of the most notable is the positive sensitivity of supercell updraft helicity to increases in both storm inflow region deep and shallow vertical wind shear. This result suggests that larger values of vertical wind shear within the storm inflow yield higher values of storm updraft helicity. Results further show that the supercell storms quickly enhance the environmental vertical wind shear within the storm inflow region. Application of ESA shows that these storm-induced perturbations then affect further storm evolution, suggesting the presence of storm–environment feedback cycles where perturbations affect future mesocyclone strength. Overall, ESA can provide insight into convection dependencies on the near-storm environment.


2019 ◽  
Vol 148 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Adam Varble ◽  
Hugh Morrison ◽  
Edward Zipser

Abstract Simulations of a squall line observed on 20 May 2011 during the Midlatitude Continental Convective Clouds Experiment (MC3E) using 750- and 250-m horizontal grid spacing are performed. The higher-resolution simulation has less upshear-tilted deep convection and a more elevated rear inflow jet than the coarser-resolution simulation in better agreement with radar observations. A stronger cold pool eventually develops in the 250-m run; however, the more elevated rear inflow counteracts the cold pool circulation to produce more upright convective cores relative to the 750-m run. The differing structure in the 750-m run produces excessive midlevel front-to-rear detrainment, reinforcing excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The contrasting mesoscale circulations are connected to early stage deep convective draft differences in the two simulations. Convective downdraft condensate mass, latent cooling, and downward motion all increase with downdraft area similarly in both simulations. However, the 750-m run has a relatively greater number of wide and fewer narrow downdrafts than the 250-m run averaged to the same 750-m grid, a consequence of downdrafts being under-resolved in the 750-m run. Under-resolved downdrafts in the 750-m run are associated with under-resolved updrafts and transport mid–upper-level zonal momentum downward to low levels too efficiently in the early stage deep convection. These results imply that under-resolved convective drafts in simulations may vertically transport air too efficiently and too far vertically, potentially biasing buoyancy and momentum distributions that impact mesoscale convective system evolution.


2019 ◽  
Vol 148 (1) ◽  
pp. 211-240 ◽  
Author(s):  
Rachel L. Miller ◽  
Conrad L. Ziegler ◽  
Michael I. Biggerstaff

Abstract This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.


2018 ◽  
Vol 146 (4) ◽  
pp. 943-965 ◽  
Author(s):  
Jayesh Phadtare

Chennai and its surrounding region received extreme rainfall on 1 December 2015. A rain gauge in the city recorded 494 mm of rainfall within a span of 24 h—at least a 100-yr event. The convective system was stationary over the coast during the event. This study analyzes how the Eastern Ghats orography and moist processes localized the rainfall. ERA-Interim data show a low-level easterly jet (LLEJ) over the adjacent ocean and a barrier jet over the coast during the event. A control simulation with the nonhydrostatic Weather Research and Forecasting (WRF) Model shows that the Eastern Ghats obstructed the precipitation-driven cold pool from moving downstream, resulting in the cold pool piling up and remaining stationary in the upwind direction. The cold pool became weak over the ocean. It stratified the subcloud layer and decelerated the flow ahead of the orography; hence, the flow entered a blocked regime. Maximum deceleration of the winds and uplifting happened at the edge of the cold pool over the coast. Therefore, a stationary convective system and maximum rainfall occurred at the coast. As a result of orographic blocking, propagation of a low pressure system (LPS) was obstructed. Because of the topographic β effect, the LPS subsequently traveled a southward path. In a sensitivity experiment without the orography, the cold pool was swept downstream by the winds; clouds moved inland. In the second experiment with no evaporative cooling of rain, the cold pool did not form; flow, as well as clouds, moved over the orography.


Sign in / Sign up

Export Citation Format

Share Document