scholarly journals Assimilation of High-Resolution Tropical Cyclone Observations with an Ensemble Kalman Filter Using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 Vortex-Scale Analyses

2013 ◽  
Vol 141 (6) ◽  
pp. 1842-1865 ◽  
Author(s):  
Altuğ Aksoy ◽  
Sim D. Aberson ◽  
Tomislava Vukicevic ◽  
Kathryn J. Sellwood ◽  
Sylvie Lorsolo ◽  
...  

Abstract The Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS) is developed to assimilate tropical cyclone inner-core observations for high-resolution vortex initialization. It is based on a serial implementation of the square root ensemble Kalman filter (EnKF). In this study, HWRF is used in an experimental configuration with horizontal grid spacing of 9 (3) km on the outer (inner) domain. HEDAS is applied to 83 cases from years 2008 to 2011. With the exception of two Hurricane Hilary (2011) cases in the eastern North Pacific basin, all cases are observed in the Atlantic basin. Observed storm intensity for these cases ranges from tropical depression to category-4 hurricane. Overall, it is found that high-resolution tropical cyclone observations, when assimilated with an advanced data assimilation technique such as the EnKF, result in analyses of the primary circulation that are realistic in terms of intensity, wavenumber-0 radial structure, as well as wavenumber-1 azimuthal structure. Representing the secondary circulation in the analyses is found to be more challenging with systematic errors in the magnitude and depth of the low-level radial inflow. This is believed to result from a model bias in the experimental HWRF caused by the overdiffusive nature of the planetary boundary layer parameterization utilized. Thermodynamic deviations from the observed structure are believed to be caused by both an imbalance between the number of the kinematic and thermodynamic observations in general and the suboptimal ensemble covariances between kinematic and thermodynamic fields. Future plans are discussed to address these challenges.

2013 ◽  
Vol 5 (6) ◽  
pp. 3123-3139 ◽  
Author(s):  
Yasumasa Miyazawa ◽  
Hiroshi Murakami ◽  
Toru Miyama ◽  
Sergey Varlamov ◽  
Xinyu Guo ◽  
...  

2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


2017 ◽  
Vol 32 (3) ◽  
pp. 1185-1208 ◽  
Author(s):  
Phillipa Cookson-Hills ◽  
Daniel J. Kirshbaum ◽  
Madalina Surcel ◽  
Jonathan G. Doyle ◽  
Luc Fillion ◽  
...  

Abstract Environment and Climate Change Canada (ECCC) has recently developed an experimental high-resolution EnKF (HREnKF) regional ensemble prediction system, which it tested over the Pacific Northwest of North America for the first half of February 2011. The HREnKF has 2.5-km horizontal grid spacing and assimilates surface and upper-air observations every hour. To determine the benefits of the HREnKF over less expensive alternatives, its 24-h quantitative precipitation forecasts are compared with those from a lower-resolution (15 km) regional ensemble Kalman filter (REnKF) system and to ensembles directly downscaled from the REnKF using the same grid as the HREnKF but with no additional data assimilation (DS). The forecasts are verified against rain gauge observations and gridded precipitation analyses, the latter of which are characterized by uncertainties of comparable magnitude to the model forecast errors. Nonetheless, both deterministic and probabilistic verification indicates robust improvements in forecast skill owing to the finer grids of the HREnKF and DS. The HREnKF exhibits a further improvement in performance over the DS in the first few forecast hours, suggesting a modest positive impact of data assimilation. However, this improvement is not statistically significant and may be attributable to other factors.


2010 ◽  
Vol 138 (2) ◽  
pp. 517-538 ◽  
Author(s):  
Nusrat Yussouf ◽  
David J. Stensrud

Abstract The conventional Weather Surveillance Radar-1988 Doppler (WSR-88D) scans a given weather phenomenon in approximately 5 min, and past results suggest that it takes 30–60 min to establish a storm into a model assimilating these data using an ensemble Kalman filter (EnKF) data assimilation technique. Severe-weather events, however, can develop and evolve very rapidly. Therefore, assimilating observations for a 30–60-min period prior to the availability of accurate analyses may not be feasible in an operational setting. A shorter assimilation period also is desired if forecasts are produced to increase the warning lead time. With the advent of the emerging phased-array radar (PAR) technology, it is now possible to scan the same weather phenomenon in less than 1 min. Therefore, it is of interest to see if the faster scanning rate of PAR can yield improvements in storm-scale analyses and forecasts from assimilating over a shorter period of time. Observing system simulation experiments are conducted to evaluate the ability to quickly initialize a storm into a numerical model using PAR data in place of WSR-88D data. Synthetic PAR and WSR-88D observations of a splitting supercell storm are created from a storm-scale model run using a realistic volume-averaging technique in native radar coordinates. These synthetic reflectivity and radial velocity observations are assimilated into the same storm-scale model over a 15-min period using an EnKF data assimilation technique followed by a 50-min ensemble forecast. Results indicate that assimilating PAR observations at 1-min intervals over a short 15-min period yields significantly better analyses and ensemble forecasts than those produced using WSR-88D observations. Additional experiments are conducted in which the adaptive scanning capability of PAR is utilized for thunderstorms that are either very close to or far away from the radar location. Results show that the adaptive scanning capability improves the analyses and forecasts when compared with the nonadaptive PAR data. These results highlight the potential for flexible rapid-scanning PAR observations to help to quickly and accurately initialize storms into numerical models yielding improved storm-scale analyses and very short range forecasts.


2014 ◽  
Vol 142 (9) ◽  
pp. 3347-3364 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Fuqing Zhang

This study examines the performance of ensemble and variational data assimilation systems for the Weather Research and Forecasting (WRF) Model. These methods include an ensemble Kalman filter (EnKF), an incremental four-dimensional variational data assimilation (4DVar) system, and a hybrid system that uses a two-way coupling between the two approaches (E4DVar). The three methods are applied to assimilate routinely collected data and field observations over a 10-day period that spans the life cycle of Hurricane Karl (2010), including the pregenesis disturbance that preceded its development into a tropical cyclone. In general, forecasts from the E4DVar analyses are found to produce smaller 48–72-h forecast errors than the benchmark EnKF and 4DVar methods for all variables and verification methods tested in this study. The improved representation of low- and midlevel moisture and vorticity in the E4DVar analyses leads to more accurate track and intensity predictions by this system. In particular, E4DVar analyses provide persistently more skillful genesis and rapid intensification forecasts than the EnKF and 4DVar methods during cycling. The data assimilation experiments also expose additional benefits of the hybrid system in terms of physical balance, computational cost, and the treatment of asynoptic observations near the beginning of the assimilation window. These factors make it a practical data assimilation method for mesoscale analysis and forecasting, and for tropical cyclone prediction.


2018 ◽  
Vol 35 (7) ◽  
pp. 2612-2628 ◽  
Author(s):  
Fumiya Togashi ◽  
Takashi Misaka ◽  
Rainald Löhner ◽  
Shigeru Obayashi

Purpose It is of paramount importance to ensure safe and fast evacuation routes in cities in case of natural disasters, environmental accidents or acts of terrorism. The same applies to large-scale events such as concerts, sport events and religious pilgrimages as airports and to traffic hubs such as airports and train stations. The prediction of pedestrian is notoriously difficult because it varies depending on circumstances (age group, cultural characteristics, etc.). In this study, the Ensemble Kalman Filter (EnKF) data assimilation technique, which uses the updated observation data to improve the accuracy of the simulation, was applied to improve the accuracy of numerical simulations of pedestrian flow. Design/methodology/approach The EnKF, one of the data assimilation techniques, was applied to the in-house numerical simulation code for pedestrian flow. Two cases were studied in this study. One was the simplified one-directional experimental pedestrian flow. The other was the real pedestrian flow at the Kaaba in Mecca. First, numerical simulations were conducted using the empirical input parameter sets. Then, using the observation data, the EnKF estimated the appropriate input parameter sets. Finally, the numerical simulations using the estimated parameter sets were conducted. Findings The EnKF worked on the numerical simulations of pedestrian flow very effectively. In both cases: simplified experiment and real pedestrian flow, the EnKF estimated the proper input parameter sets which greatly improved the accuracy of the numerical simulation. The authors believe that the technique such as EnKF could also be used effectively in other fields of computational engineering where simulations and data have to be merged. Practical implications This technique can be used to improve both design and operational implementations of pedestrian and crowd dynamics predictions. It should be of high interest to command and control centers for large crowd events such as concerts, airports, train stations and pilgrimage centers. Originality/value To the authors’ knowledge, the data assimilation technique has not been applied to a numerical simulation of pedestrian flow, especially to the real pedestrian flow handling millions pedestrian such as the Mataf at the Kaaba. This study validated the capability and the usefulness of the data assimilation technique to numerical simulations for pedestrian flow.


2014 ◽  
Vol 29 (6) ◽  
pp. 1295-1318 ◽  
Author(s):  
Craig S. Schwartz ◽  
Glen S. Romine ◽  
Kathryn R. Smith ◽  
Morris L. Weisman

Abstract Convection-permitting Weather Research and Forecasting (WRF) Model forecasts with 3-km horizontal grid spacing were produced for a 50-member ensemble over a domain spanning three-quarters of the contiguous United States between 25 May and 25 June 2012. Initial conditions for the 3-km forecasts were provided by a continuously cycling ensemble Kalman filter (EnKF) analysis–forecast system with 15-km horizontal grid length. The 3-km forecasts were evaluated using both probabilistic and deterministic techniques with a focus on hourly precipitation. All 3-km ensemble members overpredicted rainfall and there was insufficient forecast precipitation spread. However, the ensemble demonstrated skill at discriminating between both light and heavy rainfall events, as measured by the area under the relative operating characteristic curve. Subensembles composed of 20–30 members usually demonstrated comparable resolution, reliability, and skill as the full 50-member ensemble. On average, deterministic forecasts initialized from mean EnKF analyses were at least as or more skillful than forecasts initialized from individual ensemble members “closest” to the mean EnKF analyses, and “patched together” forecasts composed of members closest to the ensemble mean during each forecast interval were skillful but came with caveats. The collective results underscore the need to improve convection-permitting ensemble spread and have important implications for optimizing EnKF-initialized forecasts.


2012 ◽  
Vol 140 (2) ◽  
pp. 506-527 ◽  
Author(s):  
Chun-Chieh Wu ◽  
Yi-Hsuan Huang ◽  
Guo-Yuan Lien

Typhoon Sinlaku (2008) is a case in point under The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) with the most abundant flight observations taken and with great potential to address major scientific issues in T-PARC such as structure change, targeted observations, and extratropical transition. A new method for vortex initialization based on ensemble Kalman filter (EnKF) data assimilation and the Weather Research and Forecasting (WRF) model is adopted in this study. By continuously assimilating storm positions (with an update cycle every 30 min), the mean surface wind structure, and all available measurement data, this study constructs a unique high-spatial/temporal-resolution and model/observation-consistent dataset for Sinlaku during a 4-day period. Simulations of Sinlaku starting at different initial times are further investigated to assess the impact of the data. It is striking that some of the simulations are able to capture Sinlaku’s secondary eyewall formation, while others starting the simulation earlier with less data assimilated are not. This dataset provides a unique opportunity to study the dynamical processes of concentric eyewall formation in Sinlaku. In Part I of this work, results from the data assimilation and simulations are presented, including concentric eyewall evolution and the precursors to its formation, while detailed dynamical analyses are conducted in follow-up research.


Sign in / Sign up

Export Citation Format

Share Document