scholarly journals Relationship between the Track and Structural Evolution of Hurricane Sandy (2012) Using a Regional Ensemble

2018 ◽  
Vol 146 (12) ◽  
pp. 4279-4302 ◽  
Author(s):  
Alex M. Kowaleski ◽  
Jenni L. Evans

Abstract An ensemble of 72 Weather Research and Forecasting (WRF) Model simulations is evaluated to examine the relationship between the track of Hurricane Sandy (2012) and its structural evolution. Initial and boundary conditions are obtained from ECMWF and GEFS ensemble forecasts initialized at 0000 UTC 25 October. The 5-day WRF simulations are initialized at 0000 UTC 27 October, 48 h into the global model forecasts. Tracks and cyclone phase space (CPS) paths from the 72 simulations are partitioned into 6 clusters using regression mixture models; results from the 4 most populous track clusters are examined. The four analyzed clusters vary in mean landfall location from southern New Jersey to Maine. Extratropical transition timing is the clearest difference among clusters; more eastward clusters show later Sandy–midlatitude trough interaction, warm seclusion formation, and extratropical transition completion. However, the intercluster variability is much smaller when examined relative to the landfall time of each simulation. In each cluster, a short-lived warm seclusion forms and contracts through landfall while lower-tropospheric potential vorticity concentrates at small radii. Despite the large-scale similarity among the clusters, relevant intercluster differences in landfall-relative extratropical transition are observed. In the easternmost cluster the Sandy–trough interaction is least intense and the warm seclusion decays the most by landfall. In the second most eastward cluster Sandy retains the most intact warm seclusion at landfall because of a slightly later (relative to landfall) and weaker trough interaction compared to the two most westward clusters. Nevertheless, the remarkably similar large-scale evolution of Sandy among the four clusters indicates the high predictability of Sandy’s warm seclusion extratropical transition before landfall.

2009 ◽  
Vol 137 (10) ◽  
pp. 3388-3406 ◽  
Author(s):  
Ryan D. Torn ◽  
Gregory J. Hakim

Abstract An ensemble Kalman filter based on the Weather Research and Forecasting (WRF) model is used to generate ensemble analyses and forecasts for the extratropical transition (ET) events associated with Typhoons Tokage (2004) and Nabi (2005). Ensemble sensitivity analysis is then used to evaluate the relationship between forecast errors and initial condition errors at the onset of transition, and to objectively determine the observations having the largest impact on forecasts of these storms. Observations from rawinsondes, surface stations, aircraft, cloud winds, and cyclone best-track position are assimilated every 6 h for a period before, during, and after transition. Ensemble forecasts initialized at the onset of transition exhibit skill similar to the operational Global Forecast System (GFS) forecast and to a WRF forecast initialized from the GFS analysis. WRF ensemble forecasts of Tokage (Nabi) are characterized by relatively large (small) ensemble variance and greater (smaller) sensitivity to the initial conditions. In both cases, the 48-h forecast of cyclone minimum SLP and the RMS forecast error in SLP are most sensitive to the tropical cyclone position and to midlatitude troughs that interact with the tropical cyclone during ET. Diagnostic perturbations added to the initial conditions based on ensemble sensitivity reduce the error in the storm minimum SLP forecast by 50%. Observation impact calculations indicate that assimilating approximately 40 observations in regions of greatest initial condition sensitivity produces a large, statistically significant impact on the 48-h cyclone minimum SLP forecast. For the Tokage forecast, assimilating the single highest impact observation, an upper-tropospheric zonal wind observation from a Mongolian rawinsonde, yields 48-h forecast perturbations in excess of 10 hPa and 60 m in SLP and 500-hPa height, respectively.


2017 ◽  
Vol 145 (11) ◽  
pp. 4317-4344 ◽  
Author(s):  
Clark Evans ◽  
Kimberly M. Wood ◽  
Sim D. Aberson ◽  
Heather M. Archambault ◽  
Shawn M. Milrad ◽  
...  

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.


2019 ◽  
Vol 147 (11) ◽  
pp. 3955-3979 ◽  
Author(s):  
Chun-Chih Wang ◽  
Daniel J. Kirshbaum ◽  
David M. L. Sills

Abstract Observations from the 2015 Environment and Climate Change Canada Pan/Parapan American Science Showcase (ECPASS) and real-case, cloud-resolving numerical simulations with the Weather Research and Forecasting (WRF) Model are used to investigate two cases of moist convection forced by lake-breeze convergence over southern Ontario (18 July and 15 August 2015). The two cases shared several characteristics, including high pressure conditions, similar morning soundings, and isolated afternoon convection along a line of lake-breeze convergence between Lakes Erie and Ontario. However, the convection was significantly stronger in the August case, with robustly deeper clouds and larger radar reflectivities than in the July case. Synoptic and mesoscale analyses of these events reveal that the key difference between them was their large-scale forcing. The July event exhibited a combination of strong warm advection and large-scale descent at midlevels (850–650 hPa), which created an inversion layer that capped cloud tops at 4–6 km. The August case exhibited similar features (large-scale descent and warm advection), but these were focused at higher levels (700–400 hPa) and weaker. As a consequence, the convection in the August case was less suppressed at midlevels and ascended deeper (reaching over 8 km). Although the subcloud updraft along the lake-breeze convergence zone was also found to be stronger in the August case, this difference was found to be an effect, rather than a cause, of stronger moist convection within the cloud layer.


2016 ◽  
Vol 144 (5) ◽  
pp. 1887-1908 ◽  
Author(s):  
Jeffrey D. Duda ◽  
Xuguang Wang ◽  
Fanyou Kong ◽  
Ming Xue ◽  
Judith Berner

The efficacy of a stochastic kinetic energy backscatter (SKEB) scheme to improve convection-allowing probabilistic forecasts was studied. While SKEB has been explored for coarse, convection-parameterizing models, studies of SKEB for convective scales are limited. Three ensembles were compared. The SKMP ensemble used mixed physics with the SKEB scheme, whereas the MP ensemble was configured identically but without using the SKEB scheme. The SK ensemble used the SKEB scheme with no physics diversity. The experiment covered May 2013 over the central United States on a 4-km Weather Research and Forecasting (WRF) Model domain. The SKEB scheme was successful in increasing the spread in all fields verified, especially mid- and upper-tropospheric fields. Additionally, the rmse of the ensemble mean was maintained or reduced, in some cases significantly. Rank histograms in the SKMP ensemble were flatter than those in the MP ensemble, indicating the SKEB scheme produces a less underdispersive forecast distribution. Some improvement was seen in probabilistic precipitation forecasts, particularly when examining Brier scores. Verification against surface observations agree with verification against Rapid Refresh (RAP) model analyses, showing that probabilistic forecasts for 2-m temperature, 2-m dewpoint, and 10-m winds were also improved using the SKEB scheme. The SK ensemble gave competitive forecasts for some fields. The SK ensemble had reduced spread compared to the MP ensemble at the surface due to the lack of physics diversity. These results suggest the potential utility of mixed physics plus the SKEB scheme in the design of convection-allowing ensemble forecasts.


2013 ◽  
Vol 141 (6) ◽  
pp. 1943-1962 ◽  
Author(s):  
Florian P. Pantillon ◽  
Jean-Pierre Chaboureau ◽  
Patrick J. Mascart ◽  
Christine Lac

Abstract The extratropical transition (ET) of a tropical cyclone is known as a source of forecast uncertainty that can propagate far downstream. The present study focuses on the predictability of a Mediterranean tropical-like storm (Medicane) on 26 September 2006 downstream of the ET of Hurricane Helene from 22 to 25 September. While the development of the Medicane was missed in the deterministic forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) initialized before and during ET, it was contained in the ECMWF ensemble forecasts in more than 10% of the 50 members up to 108-h lead time. The 200 ensemble members initialized at 0000 UTC from 20 to 23 September were clustered into two nearly equiprobable scenarios after the synoptic situation over the Mediterranean. In the first and verifying scenario, Helene was steered northeastward by an upstream trough during ET and contributed to the building of a downstream ridge. A trough elongated farther downstream toward Italy and enabled the development of the Medicane in 9 of 102 members. In the second and nonverifying scenario, Helene turned southeastward during ET and the downstream ridge building was reduced. A large-scale low over the British Isles dominated the circulation in Europe and only 1 of 98 members forecasted the Medicane. The two scenarios resulted from a different phasing between Helene and the upstream trough. Sensitivity experiments performed with the Méso-NH model further revealed that initial perturbations targeted on Helene and the upstream trough were sufficient in forecasting the warm-core Medicane at 84- and 108-h lead time.


2015 ◽  
Vol 72 (4) ◽  
pp. 1307-1322 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu

Abstract Tropical cyclones (TCs) in the eastern semicircle of large-scale monsoon gyres (MGs) were observed to take either a northward (sudden northward and northward without a sharp turn) or a westward TC turn, but only the northward turn was previously simulated in a barotropic model. To understand what controls TC track types in MGs, idealized numerical experiments are performed using the full-physics Weather Research and Forecasting (WRF) Model. These experiments indicate that TCs initially located in the eastern semicircle of MGs can generally take three types of tracks: a sudden northward track, a westward track, and a northward track without a sharp turn. The track types depend upon the TC movement relative to the MG center. In agreement with barotropic simulations, the WRF simulation confirms that approaching and being collocated with the MG center is crucial to the occurrence of sudden northward TC track changes and that sudden northward track changes can be generally accounted for by changes in the steering flow. TCs that take westward tracks and northward tracks without a sharp turn do not experience such a coalescence process. Westward TCs move faster than MGs and are then located to the west of the MG center, while TCs move more slowly than MGs and then take a northward track without a sharp turn. This study reveals that the specific TC track in the eastern semicircle of an MG is sensitive to the initial wind profiles of both MGs and TCs, suggesting that improvement in the observation of TC and MG structures is very important for predicting TC track types in MGs.


2009 ◽  
Vol 24 (4) ◽  
pp. 1121-1140 ◽  
Author(s):  
Adam J. Clark ◽  
William A. Gallus ◽  
Ming Xue ◽  
Fanyou Kong

Abstract An experiment has been designed to evaluate and compare precipitation forecasts from a 5-member, 4-km grid-spacing (ENS4) and a 15-member, 20-km grid-spacing (ENS20) Weather Research and Forecasting (WRF) model ensemble, which cover a similar domain over the central United States. The ensemble forecasts are initialized at 2100 UTC on 23 different dates and cover forecast lead times up to 33 h. Previous work has demonstrated that simulations using convection-allowing resolution (CAR; dx ∼ 4 km) have a better representation of the spatial and temporal statistical properties of convective precipitation than coarser models using convective parameterizations. In addition, higher resolution should lead to greater ensemble spread as smaller scales of motion are resolved. Thus, CAR ensembles should provide more accurate and reliable probabilistic forecasts than parameterized-convection resolution (PCR) ensembles. Computation of various precipitation skill metrics for probabilistic and deterministic forecasts reveals that ENS4 generally provides more accurate precipitation forecasts than ENS20, with the differences tending to be statistically significant for precipitation thresholds above 0.25 in. at forecast lead times of 9–21 h (0600–1800 UTC) for all accumulation intervals analyzed (1, 3, and 6 h). In addition, an analysis of rank histograms and statistical consistency reveals that faster error growth in ENS4 eventually leads to more reliable precipitation forecasts in ENS4 than in ENS20. For the cases examined, these results imply that the skill gained by increasing to CAR outweighs the skill lost by decreasing the ensemble size. Thus, when computational capabilities become available, it will be highly desirable to increase the ensemble resolution from PCR to CAR, even if the size of the ensemble has to be reduced.


2017 ◽  
Vol 145 (11) ◽  
pp. 4593-4603
Author(s):  
Yanfeng Zhao ◽  
Donghai Wang ◽  
Jianjun Xu

A combined forecasting methodology, into which the spectral nudging, lateral boundary filtering, and update initial conditions methods are incorporated, was employed in the regional Weather Research and Forecasting (WRF) Model. The intent was to investigate the potential for improving the prediction capability for the rainy season in China via using as many merits of the global model having better predictability as it does for the large-scale circulation and of the regional model as it does for the small-scale features. The combined methodology was found to be successful in improving the prediction of the regional atmospheric circulation and precipitation. It performed best for the larger magnitude precipitation, the relative humidity above 800 hPa, and wind fields below 300 hPa. Furthermore, the larger the magnitude and the longer the lead time, the more obvious is the improvement in terms of the accumulated rainfall of persistent severe rainfall events.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Qianhong Tang ◽  
Lian Xie ◽  
Gary M. Lackmann ◽  
Bin Liu

The contribution of the large-scale atmospheric environment to precipitation and flooding during Hurricane Floyd was investigated in this study. Through the vortex removal technique in the Weather Research and Forecasting (WRF) model, the vortex associated with Hurricane Floyd (1999) was mostly removed in the model initial conditions and subsequent integration. Results show that the environment-induced precipitation can account for as much as 22% of total precipitation in the innermost model domain covering North Carolina coastal area and 7% in the focused hydrological study area. The high-resolution precipitation data from the WRF model was then used for input in a hydrological model to simulate river runoff. Hydrological simulation results demonstrate that without the tropical systems and their interactions with the large-scale synoptic environment the synoptic environment would only contribute 10% to the total discharge at the Tarboro gauge station. This suggests that Hurricane Floyd and Hurricane Dennis preceding it, along with the interactions between these tropical systems and the large-scale environment, have contributed to the bulk (90%) of the record amount of flood water in the Tar-Pamlico River Basin.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 776
Author(s):  
Jihong Moon ◽  
Jinyoung Park ◽  
Dong-Hyun Cha

In this study, the general impact of high-resolution moving nesting domains on tropical cyclone (TC) intensity and track forecasts was verified, for a total of 107 forecast cases of 33 TCs, using the Weather Research and Forecasting (WRF) model. The experiment, with a coarse resolution of 12 km, could not significantly capture the intensification process, especially for maximum intensities (>60 m s−1). The intense TCs were better predicted by experiments using a moving nesting domain with a horizontal resolution of 4 km. The forecast errors for maximum wind speed and minimum sea-level pressure decreased in the experiment with higher resolution; the forecast of lifetime maximum intensity was improved. For the track forecast, the experiment with a coarser resolution tended to simulate TC tracks deviating rightward to the TC motions in the best-track data; this erroneous deflection was reduced in the experiment with a higher resolution. In particular, the track forecast in the experiment with a higher resolution improved more frequently for intense TCs that were generally distributed at relatively lower latitudes among the test cases. The sensitivity of the track forecast to the model resolution was relatively significant for lower-latitude TCs. On the other hand, the track forecasts of TCs moving to the mid-latitudes, which were primarily influenced by large-scale features, were not sensitive to the resolution.


Sign in / Sign up

Export Citation Format

Share Document