scholarly journals Environmental and Radar Characteristics of Gargantuan Hail-Producing Storms

Author(s):  
Rachel E. Gutierrez ◽  
Matthew R. Kumjian

AbstractStorms that produce gargantuan hail (defined here as ≥ 6 inches or 15 cm in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure, and cause injury or even death to humans and animals. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. In this study, we analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental parameters and radar signatures in these storms to storms producing other sizes of hail. We find that traditionally used environmental parameters used for severe storms prediction, such as most unstable convective available potential energy (MUCAPE) and 0–6 km vertical wind shear, display considerable overlap between gargantuan hail-producing storm environments and those that produce smaller hail. There is a slight tendency for larger MUCAPE values for gargantuan hail cases, however. Additionally, gargantuan hail-producing storms seem to have larger low-level storm-relative winds and larger updraft widths than those storms producing smaller hail, implying updrafts less diluted by entrainment and perhaps maximizing the liquid water content available for hail growth. Moreover, radar reflectivity or products derived from it are not different from cases of smaller hail sizes. However, inferred mesocyclonic rotational velocities within the hail growth region of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail categories.

2013 ◽  
Vol 28 (5) ◽  
pp. 1261-1276 ◽  
Author(s):  
Jerald A. Brotzge ◽  
Steven E. Nelson ◽  
Richard L. Thompson ◽  
Bryan T. Smith

Abstract The ability to provide advanced warning on tornadoes can be impacted by variations in storm mode. This research evaluates 2 yr of National Weather Service (NWS) tornado warnings, verification reports, and radar-derived convective modes to appraise the ability of the NWS to warn across a variety of convective modes and environmental conditions. Several specific hypotheses are considered: (i) supercell morphologies are the easiest convective modes to warn for tornadoes and yield the greatest lead times, while tornadoes from more linear, nonsupercell convective modes, such as quasi-linear convective systems, are more difficult to warn for; (ii) parameters such as tornado distance from radar, population density, and tornado intensity (F scale) introduce significant and complex variability into warning statistics as a function of storm mode; and (iii) tornadoes from stronger storms, as measured by their mesocyclone strength (when present), convective available potential energy (CAPE), vertical wind shear, and significant tornado parameter (STP) are easier to warn for than tornadoes from weaker systems. Results confirmed these hypotheses. Supercell morphologies caused 97% of tornado fatalities, 96% of injuries, and 92% of damage during the study period. Tornado warnings for supercells had a statistically higher probability of detection (POD) and lead time than tornado warnings for nonsupercells; among supercell storms, tornadoes from supercells in lines were slightly more difficult to warn for than tornadoes from discrete or clusters of supercells. F-scale intensity and distance from radar had some impact on POD, with less impact on lead times. Higher mesocyclone strength (when applicable), CAPE, wind shear, and STP values were associated with greater tornado POD and lead times.


2017 ◽  
Vol 145 (4) ◽  
pp. 1511-1528 ◽  
Author(s):  
Mateusz Taszarek ◽  
Harold E. Brooks ◽  
Bartosz Czernecki

Abstract Observed proximity soundings from Europe are used to highlight how well environmental parameters discriminate different kind of severe thunderstorm hazards. In addition, the skill of parameters in predicting lightning and waterspouts is also tested. The research area concentrates on central and western European countries and the years 2009–15. In total, 45 677 soundings are analyzed including 169 associated with extremely severe thunderstorms, 1754 with severe thunderstorms, 8361 with nonsevere thunderstorms, and 35 393 cases with nonzero convective available potential energy (CAPE) that had no thunderstorms. Results indicate that the occurrence of lightning is mainly a function of CAPE and is more likely when the temperature of the equilibrium level drops below −10°C. The probability for large hail is maximized with high values of boundary layer moisture, steep mid- and low-level lapse rates, and high lifting condensation level. The size of hail is mainly dependent on the deep layer shear (DLS) in a moderate to high CAPE environment. The likelihood of tornadoes increases along with increasing CAPE, DLS, and 0–1-km storm-relative helicity. Severe wind events are the most common in high vertical wind shear and steep low-level lapse rates. The probability for waterspouts is maximized in weak vertical wind shear and steep low-level lapse rates. Wind shear in the 0–3-km layer is the best at distinguishing between severe and extremely severe thunderstorms producing tornadoes and convective wind gusts. A parameter WMAXSHEAR multiplying square root of 2 times CAPE (WMAX) and DLS turned out to be the best in distinguishing between nonsevere and severe thunderstorms, and for assessing the severity of convective phenomena.


2013 ◽  
Vol 141 (1) ◽  
pp. 232-251 ◽  
Author(s):  
Ryan D. Torn ◽  
David Cook

Abstract An ensemble of Weather Research and Forecasting Model (WRF) forecasts initialized from a cycling ensemble Kalman filter (EnKF) system is used to evaluate the sensitivity of Hurricanes Danielle and Karl’s (2010) genesis forecasts to vortex and environmental initial conditions via ensemble sensitivity analysis. Both the Danielle and Karl forecasts are sensitive to the 0-h circulation associated with the pregenesis system over a deep layer and to the temperature and water vapor mixing ratio within the vortex over a comparatively shallow layer. Empirical orthogonal functions (EOFs) of the 0-h ensemble kinematic and thermodynamic fields within the vortex indicate that the 0-h circulation and moisture fields covary with one another, such that a stronger vortex is associated with higher moisture through the column. Forecasts of the pregenesis system intensity are only sensitive to the leading mode of variability in the vortex fields, suggesting that only specific initial condition perturbations associated with the vortex will amplify with time. Multivariate regressions of the vortex EOFs and environmental parameters believed to impact genesis suggest that the Karl forecast is most sensitive to the vortex structure, with smaller sensitivity to the upwind integrated water vapor and 200–850-hPa vertical wind shear magnitude. By contrast, the Danielle forecast is most sensitive to the vortex structure during the first 24 h, but is more sensitive to the 200-hPa divergence and vertical wind shear magnitude at longer forecast hours.


2014 ◽  
Vol 27 (10) ◽  
pp. 3827-3847 ◽  
Author(s):  
John T. Allen ◽  
David J. Karoly ◽  
Kevin J. Walsh

Abstract The influence of a warming climate on the occurrence of severe thunderstorms over Australia is, as yet, poorly understood. Based on methods used in the development of a climatology of observed severe thunderstorm environments over the continent, two climate models [Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6) and the Cubic-Conformal Atmospheric Model (CCAM)] have been used to produce simulated climatologies of ingredients and environments favorable to severe thunderstorms for the late twentieth century (1980–2000). A novel evaluation of these model climatologies against data from both the ECMWF Interim Re-Analysis (ERA-Interim) and reports of severe thunderstorms from observers is used to analyze the capability of the models to represent convective environments in the current climate. This evaluation examines the representation of thunderstorm-favorable environments in terms of their frequency, seasonal cycle, and spatial distribution, while presenting a framework for future evaluations of climate model convective parameters. Both models showed the capability to explain at least 75% of the spatial variance in both vertical wind shear and convective available potential energy (CAPE). CSIRO Mk3.6 struggled to either represent the diurnal cycle over a large portion of the continent or resolve the annual cycle, while in contrast CCAM showed a tendency to underestimate CAPE and 0–6-km bulk magnitude vertical wind shear (S06). While spatial resolution likely contributes to rendering of features such as coastal moisture and significant topography, the distribution of severe thunderstorm environments is found to have greater sensitivity to model biases. This highlights the need for a consistent approach to evaluating convective parameters and severe thunderstorm environments in present-day climate: an example of which is presented here.


Author(s):  
Brian H. Tang ◽  
Vittorio A. Gensini ◽  
Cameron R. Homeyer

AbstractUnderstanding trends in large hail-producing environments is an important component of estimating hail risk. Here, we use two environmental parameters, the Large Hail Parameter and the Significant Hail Parameter, to assess trends in days with environments conducive for hail ≥5 cm. From 1979 to 2017, there has been an increase in days with favorable large hail environments in central and eastern portions of the U.S. This increase has been driven primarily by an increasing frequency of days with steep mid-tropospheric lapse rates and necessary combinations of instability and vertical wind shear for severe thunderstorms. Annual large hail environment area is significantly, positively correlated with (1) large hail report area east of the Rocky Mountains, and (2) large hail radar-derived area in the Midwest and Northeast. This evidence suggests that there may be an environmental fingerprint on increasing large hail risk and expanding this risk eastward.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Roberto Ingrosso ◽  
Piero Lionello ◽  
Mario Marcello Miglietta ◽  
Gianfausto Salvadori

In this study, mesoscale environments associated with 57 significant tornadoes occurring over Italy in the period 2000–2018 are analyzed. The role of the vertical Wind Shear in the lower and middle troposphere, in terms of low-level shear (LLS) and deep-level shear (DLS), and of the convective available potential energy (CAPE) as possible precursors of significant tornadoes is statistically investigated. Wind shear and CAPE data are extracted from the ERA-5 and ERA-Interim reanalyses. Overall, the study indicates that: (a) values of these variables in the two uppermost quartiles of their statistical distribution significantly increases the probability of tornado occurrences; (b) the probability increases for increasing values of LLS and DLS, and (c) is maximum when either wind shear or CAPE are large. These conclusions hold for both the reanalysis datasets and do not depend upon the season and/or the considered area. With the possible exception of weak tornadoes, which are not included in our study, our results show that large wind shear, in the presence of medium-to-high values of CAPE, are reliable precursors of tornadoes.


2008 ◽  
Vol 136 (11) ◽  
pp. 4355-4372 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

Abstract Helicity was calculated in Hurricane Bonnie (1998) using tropospheric-deep dropsonde soundings from the NASA Convection and Moisture Experiment. Large helicity existed downshear of the storm center with respect to the ambient vertical wind shear. It was associated with veering, semicircular hodographs created by strong, vortex-scale, radial-vertical flow induced by the shear. The most extreme values of helicity, among the largest ever reported in the literature, occurred in the vicinity of deep convective cells in the downshear-left quadrant. These cells reached as high as 17.5 km and displayed the temporal and spatial scales of supercells. Convective available potential energy (CAPE) averaged 861 J kg−1 downshear, but only about one-third as large upshear. The soundings nearest the deep cells were evaluated using two empirical supercell parameters that make use of CAPE, helicity, and/or shear. These parameters supported the possible existence of supercells as a consequence of the exceptional helicity combined with moderate but sufficient CAPE. Ambient vertical wind shear exceeded 12 m s−1 for 30 h, yet the hurricane maintained 50 m s−1 maximum winds. It is hypothesized that the long-lived convective cells enabled the storm to resist the negative impact of the shear. Supercells in large-helicity, curved-hodograph environments appear to provide a useful conceptual model for intense convection in the hurricane core. Helicity calculations might also give some insight into the behavior of vortical hot towers, which share some characteristics with supercells.


Author(s):  
Russ S. Schumacher ◽  
Deanna A. Hence ◽  
Stephen W. Nesbitt ◽  
Robert J. Trapp ◽  
Karen A. Kosiba ◽  
...  

AbstractDuring the RELAMPAGO-CACTI field experiments in 2018-19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018-30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. Eleven soundings showed most-unstable convective available potential energy (MUCAPE) exceeding 6000 J kg−1, comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily owing to insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American Low-Level Jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible.


2017 ◽  
Vol 145 (12) ◽  
pp. 4711-4725 ◽  
Author(s):  
Abdullah Kahraman ◽  
Mikdat Kadioglu ◽  
Paul M. Markowski

Severe convective storms occasionally result in loss of life and property in Turkey, a country not known for its severe convective weather. However, relatively little is known about the characteristics of Turkish severe weather environments. This paper documents these characteristics using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data on tornado and severe hail days in Turkey from 1979 to 2013. Severe storm environments are characterized by larger convective available potential energy (CAPE) in Turkey compared to the rest of Europe, but the CAPE values are less than those in typical U.S. severe storm environments. Severe hail is associated with large CAPE and vertical wind shear. Nonmesocyclonic tornadoes are associated with less CAPE compared with the other forms of severe weather. Deep-layer vertical wind shear is slightly weaker in Turkish supercell environments than in U.S. supercell environments, and Turkish tornadic supercell environments are characterized by much weaker low-level shear than in the United States and Europe, at least in the ECMWF reanalysis data. Composite parameters such as the supercell composite parameter (SCP) and energy–helicity index (EHI) can discriminate between very large hail and large hail environments.


2019 ◽  
Vol 147 (6) ◽  
pp. 2189-2216 ◽  
Author(s):  
Keith D. Sherburn ◽  
Matthew D. Parker

Abstract Environments characterized by large values of vertical wind shear and modest convective available potential energy (CAPE) are colloquially referred to as high-shear, low-CAPE (HSLC) environments. Convection within these environments represents a considerable operational forecasting challenge. Generally, it has been determined that large low-level wind shear and steep low-level lapse rates—along with synoptic-scale forcing for ascent—are common ingredients supporting severe HSLC convection. This work studies the specific processes that lead to the development of strong surface vortices in HSLC convection, particularly associated with supercells embedded within a quasi-linear convective system (QLCS), and how these processes are affected by varying low-level shear vector magnitudes and lapse rates. Analysis of a control simulation, conducted with a base state similar to a typical HSLC severe environment, reveals that the key factors in the development of a strong surface vortex in HSLC embedded supercells are (i) a strong low- to midlevel mesocyclone, and (ii) a subsequent strong low-level updraft that results from the intense, upward-pointing dynamic perturbation pressure gradient acceleration. Through a matrix of high-resolution, idealized simulations, it is determined that sufficient low-level shear vector magnitudes are necessary for the development of low- to midlevel vertical vorticity [factor (i)], while steeper low-level lapse rates provide stronger initial low-level updrafts [factor (ii)]. This work shows why increased low-level lapse rates and low-level shear vector magnitudes are important to HSLC convection on the storm scale, while also revealing similarities between surface vortexgenesis in HSLC embedded supercells and higher-CAPE supercells.


Sign in / Sign up

Export Citation Format

Share Document