Numerical Simulations of the Effects of Coastlines on the Evolution of Strong, Long-Lived Squall Lines

2007 ◽  
Vol 135 (5) ◽  
pp. 1710-1731 ◽  
Author(s):  
Todd P. Lericos ◽  
Henry E. Fuelberg ◽  
Morris L. Weisman ◽  
Andrew I. Watson

Abstract This study develops conceptual models of how a land–water interface affects the strength and structure of squall lines. Two-dimensional numerical simulations using the Advanced Regional Prediction System model are employed. Five sets of simulations are performed, each testing eight wind shear profiles of varying strength and depth. The first set of simulations contains a squall line but no surface or radiation physics. The second and third sets do not contain a squall line but include surface and radiation physics with a land surface on the right and a water surface on the left of the domain. The land is either warmer or cooler than the sea surface. These three simulations provide a control for later simulations. Finally, the remaining two simulation sets examine squall-line interaction with a relatively cool or warm land surface. The simulations document the thermodynamic and shear characteristics of squall lines interacting with the coastline. Results show that the inclusion of a land surface did not sufficiently affect the thermodynamic properties ahead of the squall line to change its overall structure. Investigation of ambient shear ahead of the squall line revealed that the addition of either warm or cool land reduced the strength of the net circulation in the inflow layer as measured by ambient shear. The amount of reduction in shear was found to be directly proportional to the depth and strength of the original shear layer. For stronger and deeper shears, the reduction in shear is sufficiently great that the buoyancy gradient circulation at the leading edge of the cold pool is no longer in balance with the shear circulation leading to changes in squall-line updraft structure. The authors hypothesize two ways by which a squall line might respond to passing from water to land. The weaker and more shallow the ambient shear, the greater likelihood that the squall-line structure remains unaffected by this transition. Conversely, the stronger and deeper the shear, the greater likelihood that the squall line changes updraft structure from upright/downshear to upshear tilted.

2006 ◽  
Vol 134 (7) ◽  
pp. 1919-1941 ◽  
Author(s):  
Jeffrey Frame ◽  
Paul Markowski

Abstract Numerical simulations of squall lines traversing sinusoidal mountain ridges are performed using the Advanced Regional Prediction System cloud-resolving model. Precipitation and updraft strength are enhanced through orographic ascent as a squall line approaches a ridge. The simulated squall line then weakens as it descends the ridge because some of the cold pool is blocked by the terrain, resulting in less lift along the gust front and weaker convective cells. The flow within the cold pool accelerates slightly and the depth of the cold air decreases owing to upstream blocking, transitioning the flow in the cold pool head from subcritical to supercritical, then back to subcritical at the bottom of the ridge. A hydraulic jump forms when the flow transitions the second time, enabling the development of a new convective line downwind of the mountain. These new updrafts grow and eventually replace the older updrafts that weakened during descent. This process results in the discrete propagation of a squall line just downstream of a ridge, resulting in the formation of rain shadows downstream from topographic features. Discrete propagation only occurs if a ridge is of sufficient height, however. This replacement process repeats itself if a squall line encounters multiple ridges. The risk of damaging winds from a squall line is greater on the lee side of ridges and on the top of high ridges. These terrain-forced intensity fluctuations increase with mountain height, because the higher terrain permits even less cold air to flow over it. A wider ridge results in a more gradual orographic enhancement and downslope-induced weakening.


Author(s):  
Jake P. Mulholland ◽  
John M. Peters ◽  
Hugh Morrison

AbstractThe influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.


2014 ◽  
Vol 142 (12) ◽  
pp. 4791-4822 ◽  
Author(s):  
Adam J. French ◽  
Matthew D. Parker

Abstract Output from idealized numerical simulations is used to investigate the storm-scale processes responsible for squall-line evolution following a merger with an isolated supercell. A simulation including a squall line–supercell merger is compared to one using the same initial squall line and background environment without the merger. These simulations reveal that while bow echo formation is favored by the strongly sheared background environment, the merger produces a more compact bowing structure owing to a locally enhanced rear-inflow jet. The merger also represents a favored location for severe weather production relative to other portions of the squall line, with surface winds, vertical vorticity, and rainfall all being maximized in the vicinity of the merger. An analysis of storm-scale processes reveals that the premerger squall line weakens as it encounters outflow from the preline supercell, and the supercell becomes the leading edge of the merged system. Subsequent localized strengthening of the cold pool and rear-inflow jet produce a compact, intense bow echo local to the merger, with a descending rear-inflow jet creating a broad swath of damaging surface winds. These features, common to severe bow echoes, are shown to be a direct result of the merger in the present simulations, and are diminished or absent in the no-merger simulation. Sensitivity tests reveal that mergers in a weaker vertical wind shear environment do not produce an enhanced bow echo structure, and only produce a localized region of marginally enhanced surface winds. Additional tests demonstrate that the details of postmerger evolution vary with merger location along the line.


Author(s):  
Fan Wu ◽  
Kelly Lombardo

AbstractA mechanism for precipitation enhancement in squall lines moving over mountainous coastal regions is quantified through idealized numerical simulations. Storm intensity and precipitation peak over the sloping terrain as storms descend from an elevated plateau toward the coastline and encounter the marine atmospheric boundary layer (MABL). Storms are most intense as they encounter the deepest MABLs. As the descending storm outflow collides with a moving MABL (sea breeze), surface and low-level air parcels initially accelerate upward, though their ultimate trajectory is governed by the magnitude of the negative non-hydrostatic inertial pressure perturbation behind the cold pool leading edge. For shallow MABLs, the baroclinic gradient across the gust front generates large horizontal vorticity, a low-level negative pressure perturbation, and thus a downward acceleration of air parcels following their initial ascent. A deep MABL reduces the baroclinically-generated vorticity, leading to a weaker pressure perturbation and minimal downward acceleration, allowing air to accelerate into a storm’s updraft.Once storms move away from the terrain base and over the full depth of the MABLs, storms over the deepest MABLs decay most rapidly, while those over the shallowest MABLs initially intensify. Though elevated ascent exists above all MABLs, the deepest MABLs substantially reduce the depth of the high-θe layer above the MABLs and limit instability. This relationship is insensitive to MABL temperature, even though surface-based ascent is present for the less cold MABLs, the MABL thermal deficit is smaller, and convective available potential energy (CAPE) is higher.


2020 ◽  
Vol 148 (12) ◽  
pp. 4971-4994
Author(s):  
McKenna W. Stanford ◽  
Hugh Morrison ◽  
Adam Varble

AbstractThis study investigates impacts of altering subgrid-scale mixing in “convection-permitting” kilometer-scale horizontal-grid-spacing (Δh) simulations by applying either constant or stochastic multiplicative factors to the horizontal mixing coefficients within the Weather Research and Forecasting Model. In quasi-idealized 1-km Δh simulations of two observationally based squall-line cases, constant enhanced mixing produces larger updraft cores that are more dilute at upper levels, weakens the cold pool, rear-inflow jet, and front-to-rear flow of the squall line, and degrades the model’s effective resolution. Reducing mixing by a constant multiplicative factor has the opposite effect on all metrics. Completely turning off parameterized horizontal mixing produces bulk updraft statistics and squall-line mesoscale structure closest to an LES “benchmark” among all 1-km simulations, although the updraft cores are too undilute. The stochastic mixing scheme, which applies a multiplicative factor to the mixing coefficients that varies stochastically in time and space, is employed at 0.5-, 1-, and 2-km Δh. It generally reduces midlevel vertical velocities and enhances upper-level vertical velocities compared to simulations using the standard mixing scheme, with more substantial impacts at 1- and 2-km Δh compared to 0.5-km Δh. The stochastic scheme also increases updraft dilution to better agree with the LES for one case, but has less impact on the other case. Stochastic mixing acts to weaken the cold pool but without a significant impact on squall-line propagation. It also does not affect the model’s overall effective resolution unlike applying constant multiplicative factors to the mixing coefficients.


2020 ◽  
Vol 148 (4) ◽  
pp. 1691-1715
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski

Abstract The West African summer monsoon features multiple, complex interactions between African easterly waves (AEWs), moist convection, variable land surface properties, dust aerosols, and the diurnal cycle. One aspect of these interactions, the coupling between convection and AEWs, is explored using observations obtained during the 2006 African Monsoon Multidisciplinary Analyses (AMMA) field campaign. During AMMA, a research weather radar operated at Niamey, Niger, where it surveilled 28 squall-line systems characterized by leading convective lines and trailing stratiform regions. Nieto Ferreira et al. found that the squall lines were linked with the passage of AEWs and classified them into two tracks, northerly and southerly, based on the position of the African easterly jet (AEJ). Using AMMA sounding data, we create a composite of northerly squall lines that tracked on the cyclonic shear side of the AEJ. Latent heating within the trailing stratiform regions produced a midtropospheric positive potential vorticity (PV) anomaly centered at the melting level, as commonly observed in such systems. However, a unique aspect of these PV anomalies is that they combined with a 400–500-hPa positive PV anomaly extending southward from the Sahara. The latter feature is a consequence of the deep convective boundary layer over the hot Saharan Desert. Results provide evidence of a coupling and merging of two PV sources—one associated with the Saharan heat low and another with latent heating—that ends up creating a prominent midtropospheric positive PV maximum to the rear of West African squall lines.


2011 ◽  
Vol 139 (10) ◽  
pp. 3163-3183 ◽  
Author(s):  
Casey E. Letkewicz ◽  
Matthew D. Parker

Abstract The complex evolution of convective systems crossing (or attempting to cross) mountainous terrain represents a substantial forecasting challenge. This study examines the processes associated with environments of “crossing” squall lines (which were able to redevelop strong convection in the lee of a mountain barrier) and “noncrossing” squall lines (which were not able to redevelop strong convection downstream of the barrier). In particular, numerical simulations of mature convective systems crossing idealized terrain roughly approximating the Appalachian Mountains were used to test the first-order impact of variations in the vertical wind profile upon system maintenance. By itself, the wind profile showed no ability to uniquely discriminate between simulated crossing and noncrossing squall lines; each test revealed a similar pattern of orographic enhancement, suppression, and lee reinvigoration in which a hydraulic jump deepened the system’s cold pool and renewed the low-level lifting. Increasing the mean wind led to greater enhancement of vertical velocities on the windward side of the barrier and greater suppression on the lee side. Variations in the low-level shear influenced the temperature and depth of the outflow, which in turn altered the lifting along the system’s gust front. However, in all of the wind profile tests, convection redeveloped in the lee. Additional simulations explored more marginal environments in which idealized low-level cooling or drying stabilized the downstream environment. In most such tests, the systems weakened but the presence of CAPE aloft still enabled the systems to survive in the lee. However, the combination of a stronger mean wind with diminished CAPE and increased convective inhibition (CIN) was ultimately found to eliminate downstream redevelopment and produce a noncrossing mesoscale convective system (MCS). Within these experiments, the ability of a squall line to cross a barrier similar to the Appalachians is primarily tied to the characteristics of the downstream thermodynamic environment; however, as the lee thermodynamic environment becomes less favorable, the mean wind exerts a greater influence on system intensity and redevelopment.


2020 ◽  
Author(s):  
Ludovic Touzé-Peiffer ◽  
Nicolas Rochetin ◽  
Raphaela Vogel

<p>A considerable amount of literature has been devoted to the study of strong convective squall line. In particular, many studies have noted the role of cold pools on the persistence of these squall lines. Observations and simulations have shown that squall lines are often associated with pools of air cooled by partial rain evaporation. Such cold pools spread at the surface and may initiate new convective cells at their edges, thus contributing to the maintenance of a squall line. Under which environmental conditions the lifting at the edges of cold pools is most efficient has been subject to many debates. Yet, it is generally acknowledged that the environmental wind shear is a critical factor in this process. </p><p>Recent observations and realistic simulations over the trade-wind region have revealed persistent structures of shallow cumuli associated with surface cold pools. We will call these structures shallow convective squall lines, due to their similarity with strong convective squall lines. Based on simulations from the German model ICON and on recent observations from the field campaign EUREC4A, we will study the characteristics of these shallow convective squall lines and their lifecycle. Similarly to strong convective squall lines, shallow convective squall lines organized around a leading edge composed by many updrafts and downdrafts feeding the surface cold pools. We will see that the environmental wind shear plays a key role in the persistence of these shallow convective squall line, and we will compare our findings with classical theories for strong convective squall lines.</p>


2014 ◽  
Vol 71 (7) ◽  
pp. 2733-2746 ◽  
Author(s):  
Xiaowen Tang ◽  
Wen-Chau Lee ◽  
Michael Bell

Abstract This study examines the structure and dynamics of Typhoon Hagupit’s (2008) principal rainband using airborne radar and dropsonde observations. The convection in Hagupit’s principal rainband was organized into a well-defined line with trailing stratiform precipitation on the inner side. Individual convective cells had intense updrafts and downdrafts and were aligned in a wavelike pattern along the line. The line-averaged vertical cross section possessed a slightly inward-tilting convective core and two branches of low-level inflow feeding the convection. The result of a thermodynamic retrieval showed a pronounced cold pool behind the convective line. The horizontal and vertical structures of this principal rainband show characteristics that are different than the existing conceptual model and are more similar to squall lines and outer rainbands. The unique convective structure of Hagupit’s principal rainband was associated with veering low-level vertical wind shear and large convective instability in the environment. A quantitative assessment of the cold pool strength showed that it was quasi balanced with that of the low-level vertical wind shear. The balanced state and the structural characteristics of convection in Hagupit’s principal rainband were dynamically consistent with the theory of cold pool dynamics widely applied to strong and long-lived squall lines. The analyses suggest that cold pool dynamics played a role in determining the principal rainband structure in addition to storm-scale vortex dynamics.


2013 ◽  
Vol 70 (7) ◽  
pp. 2012-2031 ◽  
Author(s):  
Robert B. Seigel ◽  
Susan C. van den Heever

Abstract Many studies have demonstrated the intimate connection between microphysics and deep moist convection, especially for squall lines via cold pool pathways. The present study examines four numerically simulated idealized squall lines using the Regional Atmospheric Modeling System (RAMS) and includes a control simulation that uses full two-moment microphysics and three sensitivity experiments that vary the mean diameter of the hail hydrometeor size distribution. Results suggest that a circulation centered at the freezing level supports midlevel convective updraft invigoration through increased latent heating. The circulation begins with hail hydrometeors that initiate within the convective updraft above the freezing level and are then ejected upshear because of the front-to-rear flow of the squall line. As the hail falls below the freezing level, the rear-inflow jet (RIJ) advects the hail hydrometeors downshear and into the upshear flank of the midlevel convective updraft. Because the advection occurs below the freezing level, some of the hail melts and sheds raindrops. The addition of hail and rain to the updraft increases latent heating owing to both an enhancement in riming and vapor deposition onto hail and rain. The increase in latent heating enhances buoyancy within the updraft, which leads to an increase in precipitation and cold pool intensity that promote a positive feedback on squall-line strength. The upshear-tilted simulated squall lines in this study indicate that as hail size is decreased, squall lines are invigorated through the recirculation mechanism.


Sign in / Sign up

Export Citation Format

Share Document