scholarly journals A Synoptic Climatology of Spring Dryline Convection in the Southern Great Plains

2020 ◽  
Vol 35 (4) ◽  
pp. 1561-1582 ◽  
Author(s):  
Trevor Mitchell ◽  
David M. Schultz

AbstractA dataset of drylines within a region of the southern Great Plains was constructed to investigate the large-scale environments associated with the initiation of deep moist convection. Drylines were identified using NOAA/NWS Weather Prediction Center surface analyses for all April, May, and June days 2006–15. Doppler radar and visible and infrared satellite imagery were used to identify convective drylines, where deep, moist convection was deemed to have been associated with the dryline circulation. Approximately 60% of drylines were convective, with initiation most frequently occurring between 2000 and 2100 UTC. Composite synoptic analyses were created of 179 convective and 104 nonconvective dryline days. The composites featured an upper-level long-wave trough to the west of the Rockies and a ridge extending across the northern and eastern United States. At the surface, the composites featured a broad surface cyclone over western Texas and southerly flow over the south-central states. Convective drylines featured more amplified upper-level flow, associated with a deeper trough in the western United States and a stronger downstream ridge than nonconvective drylines up to 5 days preceding a dryline event. By the day of a dryline event, the convective composite features greater low-level specific humidity and higher CAPE than the nonconvective composite. These results demonstrate that synoptic-scale processes over several days help create conditions conducive to deep, moist convection along the dryline.

2021 ◽  
Vol 77 ◽  
pp. 57-65
Author(s):  
Rheinhardt Scholtz ◽  
Samuel D. Fuhlendorf ◽  
Daniel R. Uden ◽  
Brady W. Allred ◽  
Matthew O. Jones ◽  
...  

2010 ◽  
Vol 25 (2) ◽  
pp. 799-814 ◽  
Author(s):  
Matthew J. Bunkers ◽  
John R. Wetenkamp ◽  
Jeffrey J. Schild ◽  
Anthony Fischer

Abstract The relationship between 700-mb temperatures and convective severe storm reports is examined using data from 1993 to 2006 for the contiguous United States. Severe storm reports are used as a rough “proxy” for the occurrence of deep moist convection, and spatial and temporal distributions of 700-mb temperatures associated with these reports are analyzed. Secondarily, the distributions are assessed by individual severe storm report type, and convective inhibition also is evaluated. The motivation for this study is derived from the occasionally used 10°–12°C at 700 mb rule of thumb for estimating the extent and strength of the capping inversion. Whereas there is a semblance of merit for using this rule at times, its utility is shown to be strongly dependent on 1) geographic location, particularly with respect to surface elevation and the frequency of elevated mixed layers, and 2) the time of year. Calculation of convective inhibition, careful examination of the sounding, and assessment of lifting mechanisms likely are more valuable than 700-mb temperatures when forecasting the potential for deep moist convection and severe storms.


2018 ◽  
Vol 19 (4) ◽  
pp. 643-658 ◽  
Author(s):  
Paul X. Flanagan ◽  
Jeffrey B. Basara ◽  
Jason C. Furtado ◽  
Xiangming Xiao

Abstract Precipitation variability has increased in recent decades across the Great Plains (GP) of the United States. Drought and its associated drivers have been studied in the GP region; however, periods of excessive precipitation (pluvials) at seasonal to interannual scales have received less attention. This study narrows this knowledge gap with the overall goal of understanding GP precipitation variability during pluvial periods. Through composites of relevant atmospheric variables from the ECMWF twentieth-century reanalysis (ERA-20C), key differences between southern Great Plains (SGP) and northern Great Plains (NGP) pluvial periods are highlighted. The SGP pluvial pattern shows an area of negative height anomalies over the southwestern United States with wind anomalies consistent with frequent synoptic wave passages along a southward-shifted North Pacific jet. The NGP pattern during pluvial periods, by contrast, depicts anomalously low heights in the northwestern United States and an anomalously extended Pacific jet. Analysis of daily heavy precipitation events reveals the key drivers for these pluvial events, namely, an east–west height gradient and associated stronger poleward moisture fluxes. Therefore, the results show that pluvial years over the GP are likely driven by synoptic-scale processes rather than by anomalous seasonal precipitation driven by longer time-scale features. Overall, the results present a possible pathway to predicting the occurrence of pluvial years over the GP and understanding the causes of GP precipitation variability, potentially mitigating the threats of water scarcity and excesses for the public and agricultural sectors.


2014 ◽  
Vol 119 (6) ◽  
pp. 3438-3459 ◽  
Author(s):  
Wei Wu ◽  
Yangang Liu ◽  
Michael P. Jensen ◽  
Tami Toto ◽  
Michael J. Foster ◽  
...  

Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 149 ◽  
Author(s):  
Garth R. Groshans ◽  
Elena A. Mikhailova ◽  
Christopher J. Post ◽  
Mark A. Schlautman ◽  
Hamdi A. Zurqani ◽  
...  

Soil databases are very important for assessing ecosystem services at different administrative levels (e.g., state, region etc.). Soil databases provide information about numerous soil properties, including soil inorganic carbon (SIC), which is a naturally occurring liming material that regulates soil pH and performs other key functions related to all four recognized ecosystem services (e.g., provisioning, regulating, cultural and supporting services). However, the ecosystem services value, or “true value,” of SIC is not recognized in the current land market. In this case, a negative externality arises because SIC with a positive value has zero market price, resulting in the market failure and the inefficient use of land. One potential method to assess the value of SIC is by determining its replacement cost based on the price of commercial limestone that would be required to amend soil. The objective of this study is to assess SIC replacement cost value in the contiguous United States (U.S.) by depth (0–20, 20–100, 100–200 cm) and considering different spatial aggregation levels (i.e., state, region, land resource region (LRR) using the State Soil Geographic (STATSGO) soil database. A replacement cost value of SIC was determined based on an average price of limestone in 2014 ($10.42 per U.S. ton). Within the contiguous U.S., the total replacement cost value of SIC in the upper two meters of soil is between $2.16T (i.e., 2.16 trillion U.S. dollars, where T = trillion = 1012) and $8.97T. States with the highest midpoint total value of SIC were: (1) Texas ($1.84T), (2) New Mexico ($355B, that is, 355 billion U.S. dollars, where B = billion = 109) and (3) Montana ($325B). When normalized by area, the states with the highest midpoint SIC values were: (1) Texas ($2.78 m−2), (2) Utah ($1.72 m−2) and (3) Minnesota ($1.35 m−2). The highest ranked regions for total SIC value were: (1) South Central ($1.95T), (2) West ($1.23T) and (3) Northern Plains ($1.01T), while the highest ranked regions based on area-normalized SIC value were: (1) South Central ($1.80 m−2), (2) Midwest ($0.82 m−2) and (3) West ($0.63 m−2). For land resource regions (LRR), the rankings were: (1) Western Range and Irrigated Region ($1.10T), (2) Central Great Plains Winter Wheat and Range Region ($926B) and (3) Central Feed Grains and Livestock Region ($635B) based on total SIC value, while the LRR rankings based on area-normalized SIC value were: (1) Southwest Plateaus and Plains Range and Cotton Region ($3.33 m−2), (2) Southwestern Prairies Cotton and Forage Region ($2.83 m−2) and (3) Central Great Plains Winter Wheat and Range Region ($1.59 m−2). Most of the SIC is located within the 100–200 cm depth interval with a midpoint replacement cost value of $2.49T and an area-normalized value of $0.34 m−2. Results from this study provide a link between science-based estimates (e.g., soil order) of SIC replacement costs within the administrative boundaries (e.g., state, region etc.).


2012 ◽  
Vol 27 (5) ◽  
pp. 1114-1135 ◽  
Author(s):  
Bryan T. Smith ◽  
Richard L. Thompson ◽  
Jeremy S. Grams ◽  
Chris Broyles ◽  
Harold E. Brooks

Abstract Radar-based convective modes were assigned to a sample of tornadoes and significant severe thunderstorms reported in the contiguous United States (CONUS) during 2003–11. The significant hail (≥2-in. diameter), significant wind (≥65-kt thunderstorm gusts), and tornadoes were filtered by the maximum event magnitude per hour on a 40-km Rapid Update Cycle model horizontal grid. The filtering process produced 22 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports in the CONUS during the sample period. The convective mode scheme presented herein begins with three radar-based storm categories: 1) discrete cells, 2) clusters of cells, and 3) quasi-linear convective systems (QLCSs). Volumetric radar data were examined for right-moving supercell (RM) and left-moving supercell characteristics within the three radar reflectivity designations. Additional categories included storms with marginal supercell characteristics and linear hybrids with a mix of supercell and QLCS structures. Smoothed kernel density estimates of events per decade revealed clear geographic and seasonal patterns of convective modes with tornadoes. Discrete and cluster RMs are the favored convective mode with southern Great Plains tornadoes during the spring, while the Deep South displayed the greatest variability in tornadic convective modes in the fall, winter, and spring. The Ohio Valley favored a higher frequency of QLCS tornadoes and a lower frequency of RM compared to the Deep South and the Great Plains. Tornadoes with nonsupercellular/non-QLCS storms were more common across Florida and the high plains in the summer. Significant hail events were dominated by Great Plains supercells, while variations in convective modes were largest for significant wind events.


Abstract Observations of thermodynamic and kinematic parameters associated with derivatives of the thermodynamics and wind fields, namely advection, vorticity, divergence, and deformation, can be obtained by applying Green’s Theorem to a network of observing sites. The five nodes that comprise the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) profiling network, spaced 50 -80 km apart, are used to obtain measurements of these parameters over a finite region. To demonstrate the applicability of this technique at this location, it is first applied to gridded model output from the High Resolution Rapid Refresh (HRRR) numerical weather prediction model, using profiles from the locations of ARM network sites, so that values calculated from this method can be directly compared to finite difference calculations. Good agreement is found between both approaches as well as between the model and values calculated from the observations. Uncertainties for the observations are obtained via a Monte Carlo process in which the profiles are randomly perturbed in accordance with their known error characteristics. The existing size of the ARM network is well-suited to capturing these parameters, with strong correlations to model values and smaller uncertainties than a more closely-spaced network, yet it is small enough that it avoids the tendency for advection to go to zero over a large area.


Sign in / Sign up

Export Citation Format

Share Document