scholarly journals Mesoscale Aspects of the Rapid Intensification of a Tornadic Convective Line across Central Florida: 22–23 February 1998

2007 ◽  
Vol 22 (2) ◽  
pp. 223-243 ◽  
Author(s):  
Alicia C. Wasula ◽  
Lance F. Bosart ◽  
Russell Schneider ◽  
Steven J. Weiss ◽  
Robert H. Johns ◽  
...  

Abstract The 22–23 February 1998 central Florida tornado outbreak was one of the deadliest and costliest in Florida’s history; a number of long-track tornadoes moved across the Florida peninsula after 0000 UTC 23 February 1998. In the 12–24 h prior to 0000 UTC 23 February, a vigorous upper-level synoptic system was tracking across the southeast United States, and a north–south-oriented convective band located ahead of the cold front was moving eastward across the Gulf of Mexico. Strong vertical wind shear was present in the lowest 1 km, due to a ∼25 m s−1 low-level jet at 925 hPa and south-southeasterly surface flow over the Florida peninsula. Further, CAPE values across the central Florida peninsula exceeded 2500 J kg−1. Upon making landfall on the Florida peninsula, the convective band rapidly intensified and developed into a line of tornadic supercells. This paper examines the relationship between a diabatically induced front across the central Florida peninsula and the rapid development of tornadic supercells in the convective band after 0000 UTC 23 February. Results suggest that persistent strong frontogenesis helped to maintain the front and enhanced ascent in the warm, moist unstable air to the south of the east–west-oriented front on the Florida peninsula, thus allowing the updrafts to rapidly intensify as they made landfall. Further, surface observations from three key locations along the surface front suggest that a mesolow moved eastward along the front just prior to the time when supercells developed. It is hypothesized that the eastward-moving mesolow may have caused the winds in the warm air to the south of the surface front to back to southeasterly and create a favorable low-level wind profile in which supercells could rapidly develop.

2016 ◽  
Vol 31 (3) ◽  
pp. 763-786 ◽  
Author(s):  
Steven E. Koch ◽  
Randolph Ware ◽  
Hongli Jiang ◽  
Yuanfu Xie

Abstract This study documents a very rapid increase in convective instability, vertical wind shear, and mesoscale forcing for ascent leading to the formation of a highly unusual tornado as detected by a ground-based microwave radiometer and wind profiler, and in 1-km resolution mesoanalyses. Mesoscale forcing for the rapid development of severe convection began with the arrival of a strong upper-level jet streak with pronounced divergence in its left exit region and associated intensification of the low-level flow to the south of a pronounced warm front. The resultant increase in stretching deformation along the front occurred in association with warming immediately to its south as low-level clouds dissipated. This created a narrow ribbon of intense frontogenesis and a rapid increase in convective available potential energy (CAPE) within 75 min of tornadogenesis. The Windsor, Colorado, storm formed at the juncture of this warm frontogenesis zone and a developing dryline. Storm-relative helicity suddenly increased to large values during this pretornadic period as a midtropospheric layer of strong southeasterly winds descended to low levels. The following events also occurred simultaneously within this short period of time: a pronounced decrease in midtropospheric equivalent potential temperature θe accompanying the descending jet, an increase in low-level θe associated with the surface sensible heating, and elimination of the capping inversion and convective inhibition. The simultaneous nature of these rapid changes over such a short period of time, not fully captured in Storm Prediction Center mesoanalyses, was likely critical in generating this unusual tornadic event.


2021 ◽  
Author(s):  
Carolina Gramcianinov ◽  
Ricardo de Camargo ◽  
Pedro Silva Dias

<p>This work aims to assess the future projected changes in the cyclones originated in the South Atlantic, focusing on their genesis and intensifying mechanisms. The TRACK program was used to identify and track cyclones based on the relative vorticity from winds at 850 hPa. Spatial distribution maps of the atmospheric environment at the time of genesis were built using information sampled from individual features, e.g., mean upper-level jet speed, low-level moisture transport. First, we evaluated the HadGEM2-ES ability to reproduce the main characteristics of the South Atlantic cyclones and access their future projected changes using the RCP8.5 scenario. Then, we performed a dynamical downscaling using the WRF model to improve the resolution of the climate model in the historical (ExpHad-HIST) and RCP8.5 (ExpHad-RCP85) scenarios. Our results showed that HadGEM2-ES were able to reproduce the South Atlantic storm track pattern and its four main cyclogenesis regions: (1) Southern Brazilian coast (SE-BR, 30ºS); (2) Northern Argentina, Uruguay, and Southern Brazil (LA PLATA, 35ºS); (3) central coast of Argentina (ARG, 40ºS-55º) and; (4) Southeastern South Atlantic (SE-SAO, 55ºS and 10ºW). However, HadGEM-ES presented less intense cyclones and a negative density bias on the subtropical storm track, as a consequence of an underestimated genesis in the LA PLATA and SE-BR regions. The ExpHad-HIST provided a better representation of these two genesis regions, where the effects of an improved orography, mesoscale processes and strong and more organized low-level jet seem to reduce the static stability and support cyclone development. HadGEM2-ES RCP8.5 future projection showed a decrease of 10% in the number of cyclones over South Atlantic and a poleward shift of the main storm track, linked to the larger reduction of systems in mid than high latitudes. This increase in the cyclone activity at 30ºS led to the high track density in the South Atlantic subtropical storm track, both in the summer and winter. The ExpHad-RCP85 also showed a poleward shift of the main storm track, but mainly in the summer. The reduction and southward displacement of the cyclone occurrences can be addressed to the increase in the static stability at mid-latitudes. However, the increase in the moisture content at low levels seems to balance the effect of the static stability as long as there is an increase in the genesis in the equatorward genesis regions. In fact, the ExpHad-RCP85 simulated growth in the genesis in the northern edge of SE-BR (20ºS, 50ºW) and ARG (45ºS) regions, in the summer, and the LA PLATA region in the winter - being the last change also observed in HadGEM2-ES RCP8.5. The large increase in the low-level moisture and a strengthening of the equatorward flank of the upper-level jet could justify more genesis at these locations, competing with the increase in static stability. Moreover, the large content of low-level moisture available in the future simulation may also be connected to the observed intensification of the cyclones over the Uruguayan and Brazilian coast.</p>


2020 ◽  
Author(s):  
Yongqiang Jiang ◽  
Chaohui Chen ◽  
Hongrang He ◽  
Yudi Liu ◽  
Hong Huang ◽  
...  

<p>The col field (a region between two lows and two highs in the isobaric surface) is a common pattern leading to the generation of mesoscale vortex and heavy rainfall in China. The mesoscale vortex usually forms near the col point and the dilatation axis of the col field in the low-level troposphere.</p><p>The Mesoscale model WRF was used to numerically simulate a rainfall process in col field. A temperature perturbation column (TPC) was introduced into the low-level col field near the col point, and the effects of TPC on mesoscale vortex and rainfall was analyzed.</p><p>It was shown that in the region of strong wind background, the TPC moves downstream and has little effect on the environment, while near the col point, the wind speed and the vertical wind shear are small, the TPC can stay in the col field for a long time, which can have a greater impact on the environment. The strong TPC near the col point can trigger the vortex. As the temperature of the air column increases, the pressure drops, leading to the low-level convergence and the upper-level divergence, and the low-level cyclonic vorticity form under the effect of ageostrophic winds, which is favor of the formation of mesoscale vortex in the weak wind field. The formation of vortex promotes the intensification of precipitation. The release of the latent heat of the condensation induced by the TPC makes a positive feedback for the mesoscale vortex. The southwestly low-level jet enhances through the thermodynamic action, resulting in convergence of the leeward low-level jet and increase of precipitation, and divergence of the upwind low-level jet and decrease of precipitation, respectively. The col field is a favorable circumstance for the formation of mesoscale vortex.</p><p>Acknowledgements. This research was supported by the National Natural Science Foundation of China (Grant Nos. 41975128 and 41275099).</p>


2015 ◽  
Vol 143 (6) ◽  
pp. 2207-2223 ◽  
Author(s):  
Gabriel Susca-Lopata ◽  
Jonathan Zawislak ◽  
Edward J. Zipser ◽  
Robert F. Rogers

Abstract An investigation into the possible causes of the rapid intensification (RI) of Hurricane Earl (2010) is carried out using a combination of global analyses, aircraft Doppler radar data, and observations from passive microwave satellites and a long-range lightning network. Results point to an important series of events leading to, and just after, the onset of RI, all of which occur despite moderate (7–12 m s−1) vertical wind shear present. Beginning with an initially vertically misaligned vortex, observations indicate that asymmetric deep convection, initially left of shear but not distinctly up- or downshear, rotates into more decisively upshear regions. Following this convective rotation, the vortex becomes aligned and precipitation symmetry increases. The potential contributions to intensification from each of these structural changes are discussed. The radial distribution of intense convection relative to the radius of maximum wind (RMW; determined from Doppler wind retrievals) is estimated from microwave and lightning data. Results indicate that intense convection is preferentially located within the upper-level (8 km) RMW during RI, lending further support to the notion that intense convection within the RMW promotes tropical cyclone intensification. The distribution relative to the low-level RMW is more ambiguous, with intense convection preferentially located just outside of the low-level RMW at times when the upper-level RMW is much greater than the low-level RMW.


2015 ◽  
Vol 143 (7) ◽  
pp. 2459-2484 ◽  
Author(s):  
Andrew B. Penny ◽  
Patrick A. Harr ◽  
Michael M. Bell

Abstract Large uncertainty still remains in determining whether a tropical cloud cluster will develop into a tropical cyclone. During The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS-08) field experiment, over 50 tropical cloud clusters were monitored for development, but only 4 developed into a tropical cyclone. One nondeveloping tropical disturbance (TCS025) was closely observed for potential formation during five aircraft research missions, which provided an unprecedented set of observations pertaining to the large-scale and convective environments of a nondeveloping system. The TCS025 disturbance was comprised of episodic convection that occurred in relation to the diurnal cycle along the eastern extent of a broad low-level trough. The upper-level environment was dominated by two cyclonic cells in the tropical upper-tropospheric trough (TUTT) north of the low-level trough in which the TCS025 circulation was embedded. An in-depth examination of in situ observations revealed that the nondeveloping circulation was asymmetric and vertically misaligned, which led to larger system-relative flow on the mesoscale. Persistent environmental vertical wind shear and horizontal shearing deformation near the circulation kept the system from becoming better organized and appears to have allowed low equivalent potential temperature () air originating from one of the TUTT cells to the north (upshear) to impact the thermodynamic environment of TCS025. This in turn weakened subsequent convection that might otherwise have improved alignment and contributed to the transition of TCS025 to a tropical cyclone.


2022 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Matthias Röthlisberger ◽  
Tess Parker ◽  
Kai Kornhuber ◽  
Olivia Martius

Abstract. In the Northern Hemisphere, recurrence of transient Rossby wave packets over periods of days to weeks, termed RRWPs, may repeatedly create similar weather conditions. This recurrence leads to persistent surface anomalies and high-impact weather events. Here, we demonstrate the significance of RRWPs for persistent heatwaves in the Southern Hemisphere (SH). We investigate the relationship between RRWPs, atmospheric blocking, and amplified quasi-stationary Rossby waves with two cases of heatwaves in Southeast Australia (SEA) in 2004 and 2009. This region has seen extraordinary heatwaves in recent years. We also investigate the importance of transient systems such as RRWPs and two other persistent dynamical drivers: atmospheric blocks and quasi-resonant amplification (QRA). We further explore the link between RRWPs, blocks, and QRA in the SH using the ERA-I reanalysis dataset (1979–2018). We find that QRA and RRWPs are strongly associated: 40 % of QRA days feature RRWPs, and QRA events are 13 times more likely to occur with an RRWPs event than without it. Furthermore, days with QRA and RRWPs show high correlations in the composite mean fields of upper-level flows, indicating that both features have a similar hemispheric flow configuration. Blocking frequencies for QRA and RRWP conditions both increase over the south Pacific Ocean but differ substantially over parts of the south Atlantic and Indian Ocean.


2016 ◽  
Vol 144 (4) ◽  
pp. 1363-1382 ◽  
Author(s):  
Corey T. Guastini ◽  
Lance F. Bosart

Abstract A 1996–2013 May–August U.S. progressive derecho climatology existing entirely within the modern radar era is constructed identifying 256 derecho events over the 18-yr span. A corridor of enhanced derecho activity in agreement with previous derecho studies stretches from southern Minnesota to the border of Ohio and West Virginia with a marked decrease east of the Appalachian Mountains. A secondary maximum in progressive derecho activity exists in Kansas and Oklahoma. Analyses of derecho frequency by month of the warm season indicate a northward shift in frequency through July and an increase in derecho frequency through the first half of the warm season followed by a large decrease in August. The 256 identified derecho events are divided subjectively into seven distinct categories based on the synoptic environments in which they form. While the prevailing “northwest flow” conceptual model is upheld as the dominant progressive derecho synoptic category, the common occurrence of warm-season progressive derechos ahead of well-defined upper-level troughs is presented. This connection between upper-level troughs and progressive derecho formation expands on the relationship between upper-level troughs and serial derecho formation that has been the focus of past studies. In addition, a link between progressive derecho formation and easterly low-level flow to the north of a Rocky Mountain lee cyclone is bolstered. Consistent with previous derecho studies, all composite categories are characterized by large low-level moisture and the presence of an upper-level jet at derecho initiation.


2017 ◽  
Vol 145 (11) ◽  
pp. 4447-4466 ◽  
Author(s):  
R. A. Houze ◽  
L. A. McMurdie ◽  
K. L. Rasmussen ◽  
A. Kumar ◽  
M. M. Chaplin

Conditions producing disastrous flooding in Uttarakhand, India, in June 2013 differed from conditions that produced other notorious floods in the Himalayan region in recent years. During the week preceding the Uttarakhand flood, deep convection moistened the mountainsides, making them vulnerable to flooding. However, the precipitation producing the flood was not associated with a deep convective event. Rather, an eastward-propagating upper-level trough in the westerlies extended abnormally far southward, with the jet reaching the Himalayas. The south end of the trough merged with a monsoon low moving westward across India. The merged system produced persistent moist low-level flow oriented normal to the Himalayas that advected large amounts of water vapor into the Uttarakhand region. The flow was moist neutral when it passed over the Himalayan barrier, and orographic lifting produced heavy continuous rain over the region for 2–3 days. The precipitation was largely stratiform in nature although embedded convection of moderate depth occurred along the foothills, where some mild instability was being released. The Uttarakhand flood had characteristics in common with major 2013 floods in the Rocky Mountains in Colorado and Alberta, Canada.


2018 ◽  
Vol 146 (8) ◽  
pp. 2447-2467 ◽  
Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

Abstract This article explores the simultaneous effect of vertical wind shear (VWS) and low-level mean flow (LMF) on tropical cyclone (TC) structure evolution. The structural evolution of 180 western North Pacific TCs from 2002 to 2014 was measured by a new parameter, the RV ratio, which is defined as the ratio of a TC’s radius of 34-kt (17.5 m s−1) wind to its maximum wind speed at the ending point of the intensification period. Whereas TCs with RV ratios in the lowest quartile of all 180 samples favored intensification over expansion, and 82% of these TCs experienced rapid intensification, TCs with RV ratios in the topmost quartile favored size expansion over intensification. A novel result of this study is that TC RV ratios were found to correlate with the LMF orientation relative to the deep-layer VWS vector. Specifically, whereas an LMF directed toward the left-of-shear orientation favors TC intensification, a right-of-shear LMF favors TC size expansion. This study further analyzed the TC rainfall asymmetry and asymmetric surface flow using satellite observations. Results show that for a TC affected by an LMF with right-of-shear orientation, the positive surface flux anomaly in the upshear outer region promotes convection in the downshear rainband region. On the other hand, a left-of-shear LMF induces a positive surface flux anomaly in the downshear outer region, thus promoting convection in the upshear inner core. Enhancement of the symmetric inner-core convection favors intensification, whereas enhancement of the downshear rainband favors expansion.


2018 ◽  
Vol 75 (1) ◽  
pp. 361-378 ◽  
Author(s):  
Zhuo Wang ◽  
Weiwei Li ◽  
Melinda S. Peng ◽  
Xianan Jiang ◽  
Ron McTaggart-Cowan ◽  
...  

Practical predictability of tropical cyclogenesis over the North Atlantic is evaluated in different synoptic flow regimes using the NCEP Global Ensemble Forecast System (GEFS) reforecasts with forecast lead time up to two weeks. Synoptic flow regimes are represented by tropical cyclogenesis pathways defined in a previous study based on the low-level baroclinicity and upper-level forcing of the genesis environmental state, including nonbaroclinic, low-level baroclinic, trough-induced, weak tropical transition (TT), and strong TT pathways. It is found that the strong TT and weak TT pathways have lower predictability than the other pathways, linked to the lower predictability of vertical wind shear and midlevel humidity in the genesis vicinity of a developing TT storm. Further analysis suggests that stronger extratropical influences contribute to lower genesis predictability. It is also shown that the regional and seasonal variations of the genesis predictive skill in the GEFS can be largely explained by the relative frequency of occurrence of each pathway and the predictability differences among pathways. Predictability of tropical cyclogenesis is further discussed using the concept of the genesis potential index.


Sign in / Sign up

Export Citation Format

Share Document