The Nature of Cation–Anion Interactions in Magnetic Ionic Liquids as Revealed Using High-Pressure Fourier Transform Infrared (FT-IR) Spectroscopy

2019 ◽  
Vol 73 (5) ◽  
pp. 511-519 ◽  
Author(s):  
Christopher M. Burba ◽  
Hai-Chou Chang

Magnetic ionic liquids are a group of magneto-responsive compounds that typically possess high ionic conductivities and low vapor pressures. In spite of the general interest in these materials, a number of questions concerning the fundamental interactions among the ions remain unanswered. We used vibrational spectroscopy to gain insight into the nature of these interactions. Intramolecular vibrational modes of the ions are quite sensitive to their local potential energy environments, which are ultimately defined by cation–anion coordination schemes present among the ions. Ambient pressure Fourier transform infrared (FT-IR) spectroscopy indicates comparable interaction motifs for 1-ethyl-3-methylimidazolium tetrachloroferrate(III), [emim]FeCl4, and 1-ethyl-3-methylimidazolium tetrabromoferrate(III), [emim]FeBr4, magnetic ionic liquids. However, the vibrational modes of [emim]FeCl4 generally occur at slightly higher frequencies than those of [emim]FeBr4. These differences reflect different interaction strengths between the [emim]+ cations and [Formula: see text] or [Formula: see text] anions. This conclusion is supported by gas-phase ab initio calculations of single [emim]FeCl4 and [emim]FeBr4 ion pairs that show longer C–H···Br–Fe interaction lengths compared to C–H···Cl–Fe. Although the IR spectra of [emim]FeCl4 and [emim]FeBr4 are comparable at ambient pressure, a different series of spectroscopic changes transpire when pressure is applied to these compounds. This suggests [emim]+ cations experience different types of interaction with the anions under high-pressure conditions. The pressure-dependent FT-IR spectra highlights the critical role ligands attached to the tetrahalogenoferrate(III) anions play in modulating cation–anion interactions in magnetic ionic liquids.

2019 ◽  
Vol 12 (1) ◽  
pp. 525-567 ◽  
Author(s):  
Satoshi Takahama ◽  
Ann M. Dillner ◽  
Andrew T. Weakley ◽  
Matteo Reggente ◽  
Charlotte Bürki ◽  
...  

Abstract. Atmospheric particulate matter (PM) is a complex mixture of many different substances and requires a suite of instruments for chemical characterization. Fourier transform infrared (FT-IR) spectroscopy is a technique that can provide quantification of multiple species provided that accurate calibration models can be constructed to interpret the acquired spectra. In this capacity, FT-IR spectroscopy has enjoyed a long history in monitoring gas-phase constituents in the atmosphere and in stack emissions. However, application to PM poses a different set of challenges as the condensed-phase spectrum has broad, overlapping absorption peaks and contributions of scattering to the mid-infrared spectrum. Past approaches have used laboratory standards to build calibration models for prediction of inorganic substances or organic functional groups and predict their concentration in atmospheric PM mixtures by extrapolation. In this work, we review recent studies pursuing an alternate strategy, which is to build statistical calibration models for mid-IR spectra of PM using collocated ambient measurements. Focusing on calibrations with organic carbon (OC) and elemental carbon (EC) reported from thermal–optical reflectance (TOR), this synthesis serves to consolidate our knowledge for extending FT-IR spectroscopy to provide TOR-equivalent OC and EC measurements to new PM samples when TOR measurements are not available. We summarize methods for model specification, calibration sample selection, and model evaluation for these substances at several sites in two US national monitoring networks: seven sites in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network for the year 2011 and 10 sites in the Chemical Speciation Network (CSN) for the year 2013. We then describe application of the model in an operational context for the IMPROVE network for samples collected in 2013 at six of the same sites as in 2011 and 11 additional sites. In addition to extending the evaluation to samples from a different year and different sites, we describe strategies for error anticipation due to precision and biases from the calibration model to assess model applicability for new spectra a priori. We conclude with a discussion regarding past work and future strategies for recalibration. In addition to targeting numerical accuracy, we encourage model interpretation to facilitate understanding of the underlying structural composition related to operationally defined quantities of TOR OC and EC from the vibrational modes in mid-IR deemed most informative for calibration. The paper is structured such that the life cycle of a statistical calibration model for FT-IR spectroscopy can be envisioned for any substance with IR-active vibrational modes, and more generally for instruments requiring ambient calibrations.


2011 ◽  
Vol 25 (6) ◽  
pp. 271-285 ◽  
Author(s):  
Tao Hu ◽  
Wen-Ying Jin ◽  
Cun-Gui Cheng

Fourier transform infrared spectroscopy (FT-IR) with Horizontal Attenuated Total Reflectance (HATR) techniques is used to obtain the FT-IR spectra of five kinds of mosses, such asPtychomitrium dentatum(Mitt.) Jaeg.,Ptychomitrium polyphylloides(C. Muell.) Par.,Ptychomitrium sinense(Mitt.) Jaeg.,Macromitrium syntrichophyllumTher. Etp. Vard., andMacromitrium ferrieiCard. Sz Ther. Based on the comparison of the above mosses in the FT-IR spectra, the region ranging from 4000 to 650 cm−1was selected as the characteristic spectra for analysis. Principal component analysis (PCA) and cluster analysis are considered to identify the five moss species. Because they belong to the homogeneous plants, and have similar chemical components and close FT-IR spectroscopy, PCA and cluster analysis can only give a rough result of classification among the five moss species, Fourier self-deconvolution (FSD) and discrete wavelet transform (DWT) methods are used to enhance the differences between them. We use these methods for further study. Results show that it is an excellent method to use FT-IR spectroscopy combined with FSD and DWT to classify the different species in the same family. FT-IR spectroscopy combined with chemometrics, such as FSD and DWT, can be used as an effective tool in systematic research of bryophytes.


2021 ◽  
Author(s):  
I.S. Al-Amri ◽  
F. Mabood ◽  
I.T. Kadim ◽  
A.Y. Alkindi ◽  
A. Al-Harrasi ◽  
...  

ABSTRACTThis study was designed to develop a rapid, sensitive, accurate, and inexpensive Fourier Transform Infrared Reflectance (FT-IR) Spectroscopy coupled with Principle Component Analysis (PCA) as a detection technique to evaluate the solubility of 11-Keto-β-Boswellic acid (KBA), from the gum resin extracted from the Omani frankincense, (Boswellia sacra) in the liver of STZ induced diabetic mice. This study also investigated the effect of KBA on the histological changes of hepatocytes of diabetic mice. Liver tissue samples from three groups of mice included normal control group, diabetic control group and diabetic group treated IP with KBA were scanned with FT-IR spectrophotometer in the reflection mode. FT-IR Spectra were collected in the wavenumber range from 400 to 4000cm-1 using ATR accessorry. The results of FT-IR Spectra were analyzed by using multivariate method Principle Component Analysis. The PCA score plot is an exploratory multivariate method indicated that there was a complete segregation among the three groups of liver samples based on change in variation of position of wavenumber in FT-IR spectra, which revealed that there is a clear effect of KBA solubility on treatments. The histological features showed an improvement in the liver tissues with normal structures of hepatocytes with exhibiting mild vacuolations in their cytoplasm. In conclusion, reflectance FT-IR spectroscopy coupled with PCA could be deployed as a new detection method for rapid, low cost and non-destructive method for evaluating of treatment effects in diseased liver tissue based on the solubility of KBA. Histological findings demonstrated the protective effective of KBA on improving the morphology of liver tissue in diabetic mice which resulted in complete recovery to the damage observed in diabetic control group.Summary StatementReflectance FT-IR spectroscopy coupled with PCA has been deployed as a new rapid, inexpensive and non-destructive detection method to examine the solubility of 11-keto-β-Boswellic acid (KBA) in streptozotocin (STZ) induced-diabetes mice liver tissue following intraperitoneal treatment. Moreover, microscopic study of liver tissue histopathology revealed that KBA has a protecting effect against STZ damage.


2020 ◽  
Author(s):  
Huayan Yang ◽  
Fangling Wu ◽  
Fuxin Xu ◽  
Keqi Tang ◽  
Chuanfan Ding ◽  
...  

Abstract Fourier transform infrared (FT-IR) spectroscopy is a label-free and highly sensitive technique that provides complete information on the chemical composition of biological samples. The bacterial FT-IR signals are extremely specific and highly reproducible fingerprint-like patterns, making FT-IR an efficient tool for bacterial typing and identification. Due to the low cost and high flux, FT-IR has been widely used in hospital hygiene management for infection control, epidemiological studies, and routine bacterial determination of clinical laboratory values. However, the typing and identification accuracy could be affected by many factors, and the bacterial FT-IR data from different laboratories are usually not comparable. A standard protocol is required to improve the accuracy of FT-IR-based typing and identification. Here, we detail the principles and procedures of bacterial typing and identification based on FT-IR spectroscopy, including bacterial culture, sample preparation, instrument operation, spectra collection, spectra preprocessing, and mathematical data analysis. Without bacterial culture, a typical experiment generally takes <2 h.


Sign in / Sign up

Export Citation Format

Share Document