John Senders, Human Error, and System Safety

Author(s):  
Barry Strauch

Objective I examine John Senders’ work and discuss his influence on the study of error causation,error mitigation, and sociotechnical system safety. Background John Senders’ passing calls for an evaluation of the impact of his work. Method I review literature and accident investigation findings to discuss themes in Senders’ work and potential associations between that work and error causation and system safety. Results Senders consistently emphasized empirical rigor and theoretical exploration in his research, with the desire to apply that work to enhance human performance. He has contributed to changing the way error has been viewed, and to developing and implementing programs and techniques to mitigate error. While a causal relationship between Senders’ work and safety cannot be established, an association can be drawn between his research and efforts to mitigate error. Conclusion Because of Senders’ work, we have a better understanding of error causation and enhanced ways of mitigating system errors. However, new sources of error, involving advanced systems and operators’ knowledge and understanding of their functionalities can, if not addressed, degrade system safety. Application Modifications to advanced automation and operator training are suggested, and research to improve operator expertise in interacting with automated systems proposed.

2021 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Nuno Quental ◽  
João Rocha ◽  
Jorge Silva ◽  
Lídia Menezes ◽  
Jorge Santos

Purpose: Air transport is a highly regulated branch of aviation, but it continues to show occurrences where human error is present. Fatigue is now recognized as a hazard which degrades human performance and can put flight safety at risk. In this regard, the general objective of this study is to assess the impact of cognitive fatigue on airline pilots and how it can contribute to the occurrence of accidents and incidents.Methodology: Three airline pilots participated in the case study. The participants’ cognitive fatigue was monitored according to four methods, being two of them of a subjective nature – the sleep diary (SD) and the Samn-Perelli 7-Point Fatigue Scale (SPS), and the other two of an objective nature – the Psychomotor Vigilance Task (PVT) and the actigraphy (actiwatch ReadibandTM 5). During their flight duty periods (FDPs), the pilots’ performance was also assessed according to the score delivered by a fatigue management software (FAID®).Findings: The obtained results allowed to understand whether the pilots are aware of their alertness and to identify factors which affect their performance levels. Between the beginning and the end of each FDP, significant changes were observed concerning the assessment on the SPS scale, the reaction time (RT) and the fatigue score generated by the biomathematical models associated to the technique of the actigraphy and the software FAID®.Originality/value: The risk of accident or serious error was classified according to the four methodologies used. Thus, it is possible to verify if there is a correspondence between the different scales or if there are scales more conservative (with a higher associated risk) than others.


Author(s):  
Ann M. Bisantz ◽  
Amy R. Pritchett

Methodologies for assessing human judgment in complex domains are important for the design of both displays that inform judgment and automated systems that suggest judgments. This paper uses the n-system lens model to evaluate the impact of displays on human judgment and to explicitly assess the similarity between human judgments and a set of potential judgment algorithms for use in automated systems. First, the need for and concepts underlying judgment analysis are outlined. Then the n-system lens model and its parameters are formally described. This model is then used to examine a previously conducted study of aircraft collision detection that had been analyzed using standard analysis of variance methods. Our analysis found the same main effects as did the earlier analysis. However, n-system lens model analysis was able to provide greater insight into the information relied upon for judgments and the impact of displays on judgment. Additionally, the analysis was able to identify attributes of human judgments that were---and were not---similar to judgments produced by automated systems. Potential applications of this research include automated aid design and operator training.


Author(s):  
Jonathan Corrado

Abstract Although considerable research has been conducted on the human-machine interface, this is a moving target as industry sprints to keep up with technological advances. Conflicts remain between the optimism of technology developers and the real-life operational difficulties that accompany the introduction of these systems. The developers typically claim that the new technology will result in performance improvements. Due to the operational complexities introduced, however, the technology may actually decrease user performance. Unfortunately, the complexities confronting operators are difficult for design teams to predict. Incorporating advances in technology is necessary, but should be properly balanced within the confines of the system. It is easy to forget that humans are a vital part of this system. The human, including the human's inclination for error, should be considered a fundamental aspect of the system, reflected in design and accounted for in the design process. Engaged human involvement is necessary for safe and successful system operation, but like all systems, it has its failure modes. Humans' innate propensity for error in system operation should be addressed from multiple fronts. This article proposes a method to minimize the impact of human error throughout life of a facility via incorporation of a human performance improvement model that institutes human error severity criteria, establishment of a system to capture human error data, and via data trending, a process to predict negative behaviors before potential errors or adverse events can occur.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Jonathan K. Corrado

Abstract Today's sensory and processing technologies are perceptive and precise. They can discern the environment, solve complicated problems, make assessments, and learn from experience. Although they do not think the way humans do, they can replicate many human intellectual aptitudes. Throughout the last several decades, companies have implemented advanced technology and increasingly removed the human from many aspects of nuclear operation. There are many advantages to this transition, but, like any system modification, failures inevitably manifest. In the instance of this article, human errors have resulted and have accounted for several accidents at nuclear facilities in the United States due to this transition. The accidents at these facilities due to human error often result in plant shutdowns, unnecessary expenses, and have the capacity to be problematic for people, the facilities, and environments. This article explores the context surrounding the complexity of changing technologies at the nuclear facilities and the potential exacerbation of problems caused by human error when technology advancements concerning operator interaction with control systems are implemented. To understand the complexity surrounding the human interaction with advancing technologies, the concepts of human performance and human factors are examined and then the impact of these concepts within the framework of advancing technology are applied to the operation of nuclear facilities. This review draws attention to the vulnerabilities due to human error at nuclear facilities within the context of continually advancing technology and sheds insight on the role human performance and human factors have on system design and the resulting outcome.


2017 ◽  
Vol 12 ◽  
pp. 104
Author(s):  
Petra Skolilova

The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs) are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.


Author(s):  
Abigail R. Wooldridge ◽  
Rod D. Roscoe ◽  
Rod D. Roscoe ◽  
Shannon C. Roberts ◽  
Rupa Valdez ◽  
...  

The Diversity Committee of HFES has led sessions at the Annual Meeting for the past three years focused on improving diversity, equity and inclusion in the society as well as providing support to human factors and ergonomics (HF/E) researchers and practitioners who aim to apply HF/E knowledge and principles to improve diversity, equity and inclusion through their work. In this panel, we bring together researchers actively engaged in designing technology and systems by considering issues of diversity, equity and inclusion to share insights and methods. Topics include the thoughtful design of sampling strategies and research approaches, alternative and participatory methods to understand the impact of automation and technology on equity, scoping design problems to be inclusive and equitable through interdisciplinary partnerships, and the application of sociotechnical system design and team science to develop interdisciplinary teams. By sharing our experiences, we hope to prepare others to successfully approach these topics.


Vision ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Olga Lukashova-Sanz ◽  
Siegfried Wahl ◽  
Thomas S. A. Wallis ◽  
Katharina Rifai

With rapidly developing technology, visual cues became a powerful tool for deliberate guiding of attention and affecting human performance. Using cues to manipulate attention introduces a trade-off between increased performance in cued, and decreased in not cued, locations. For higher efficacy of visual cues designed to purposely direct user’s attention, it is important to know how manipulation of cue properties affects attention. In this verification study, we addressed how varying cue complexity impacts the allocation of spatial endogenous covert attention in space and time. To gradually vary cue complexity, the discriminability of the cue was systematically modulated using a shape-based design. Performance was compared in attended and unattended locations in an orientation-discrimination task. We evaluated additional temporal costs due to processing of a more complex cue by comparing performance at two different inter-stimulus intervals. From preliminary data, attention scaled with cue discriminability, even for supra-threshold cue discriminability. Furthermore, individual cue processing times partly impacted performance for the most complex, but not simpler cues. We conclude that, first, cue complexity expressed by discriminability modulates endogenous covert attention at supra-threshold cue discriminability levels, with increasing benefits and decreasing costs; second, it is important to consider the temporal processing costs of complex visual cues.


Author(s):  
Angélica J. M. de Leeuw ◽  
Maureen A. M. Oude Luttikhuis ◽  
Annemarijn C. Wellen ◽  
Christine Müller ◽  
Cornelis F. Calkhoven

AbstractThe severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has proven a challenge to healthcare systems since its first appearance in late 2019. The global spread and devastating effects of coronavirus disease 2019 (COVID-19) on patients have resulted in countless studies on risk factors and disease progression. Overweight and obesity emerged as one of the major risk factors for developing severe COVID-19. Here we review the biology of coronavirus infections in relation to obesity. In particular, we review literature about the impact of adiposity-related systemic inflammation on the COVID-19 disease severity, involving cytokine, chemokine, leptin, and growth hormone signaling, and we discuss the involvement of hyperactivation of the renin-angiotensin-aldosterone system (RAAS). Due to the sheer number of publications on COVID-19, we cannot be completed, and therefore, we apologize for all the publications that we do not cite.


1994 ◽  
Vol 33 (04) ◽  
pp. 390-396 ◽  
Author(s):  
J. G. Stewart ◽  
W. G. Cole

Abstract:Metaphor graphics are data displays designed to look like corresponding variables in the real world, but in a non-literal sense of “look like”. Evaluation of the impact of these graphics on human problem solving has twice been carried out, but with conflicting results. The present experiment attempted to clarify the discrepancies between these findings by using a complex task in which expert subjects interpreted respiratory data. The metaphor graphic display led to interpretations twice as fast as a tabular (flowsheet) format, suggesting that conflict between earlier studies is due either to differences in training or to differences in goodness of metaphor, Findings to date indicate that metaphor graphics work with complex as well as simple data sets, pattern detection as well as single number reporting tasks, and with expert as well as novice subjects.


Sign in / Sign up

Export Citation Format

Share Document