Thermal conduction characteristics of silicone composites including ultrasonic-treated graphite

2021 ◽  
pp. 002199832110595
Author(s):  
Weontae Oh ◽  
Jong-Seong Bae ◽  
Hyoung-Seok Moon

The microstructural change of graphite was studied after ultrasonic treatment of the graphite. When the graphite solution was treated with varying ultrasonic power and time, the microstructure changed gradually, and accordingly, the thermal conductivity characteristics of the composite containing the as-treated graphite was also different with each other. Thermal conductivity showed the best result in the silicone composite containing graphite prepared under the optimum condition of ultrasonic treatment, and the thermal conductivity of the composite improved proportionally along with the particle size of graphite. When the silicone composite was prepared by using a mixture of inorganic oxides and graphite rather than graphite alone, the thermal conductivity of the silicone composite was further increased. A silicone composite containing graphite was used for LED (light emitting diode) lighting system as a thermal interface material (TIM), and the temperature elevation due to heat generated, while the lighting was actually operated, was analyzed.

2016 ◽  
Vol 138 (1) ◽  
Author(s):  
S. Shanmugan ◽  
O. Zeng Yin ◽  
P. Anithambigai ◽  
D. Mutharasu

All solid-state lighting products produce heat which should be removed by use of a heat sink. Since the two mating surfaces of light emitting diode (LED) package and heat sink are not flat, a thermal interface material (TIM) must be applied between them to fill the gaps resulting from their surface roughness and lack of coplanarity. The application of a traditional TIM may squeeze out when pressure is applied to join the surfaces and hence a short circuit may result. To avoid such a problem, a thin solid film based TIM has been suggested. In this study, a zinc oxide (ZnO) thin film was coated on Cu substrates and used as the TIM. The ZnO thin film coated substrates were used as heat sink purposes in this study. The prepared heat sink was tested with 3 W green LED and the observed results were compared with the results of same LED measured at bare and commercial thermal paste coated Cu substrates boundary conditions. The influence of interface material thickness on total thermal resistance (Rth-tot), rise in junction temperature (TJ), and optical properties of LED was analyzed. A noticeable reduction in Rth-tot (5.92 K/W) as well as TJ (ΔTJ = 11.83 °C) was observed for 800 nm ZnO thin film coated Cu substrates boundary conditions when compared with bare and thermal paste coated Cu substrates tested at 700 mA. Change in TJ influenced the thermal resistance of ZnO interface material. Improved lux level and decreased correlated color temperature (CCT) were also observed with ZnO coated Cu substrates.


2007 ◽  
Vol 1053 ◽  
Author(s):  
Travis Z. Fullem ◽  
Eric J. Cotts

AbstractWhile detailed theories exist for thermal conduction due to electrons and phonons in crystalline solids, phonon scattering and transmission at solid/solid interfaces is not as well understood. Steady increases in the power density of microelectronic devices have resulted in an increasing need in the electronics industry for an understanding of thermal conduction in multilayered structures. The materials of interest in this study consist of a polymer matrix in which small (on the order of microns to tens of microns) highly conductive filler particles (such as Ag or alumina) are suspended. These materials are used to form a thermal interface material bondline (a fifty to several hundred micron bonding layer) between a power device and a heat spreader. Such a bondline contains many polymer/filler interfaces. Using a micro Fourier apparatus, the thermal conductivities of such thermal interface material (TIM) bondlines of various thicknesses, ranging from fifty microns to several hundred microns, have been measured. The microstructure of these bondlines has been investigated using optical microscopy and acoustic microscopy. Measured values of thermal conductivity are compared to values for bulk samples, and considered in terms of microstructural features such as filler particle depleted regions. The influence of polymer/filler particle interfaces in the TIM bondline on phonon transport through the bondline is also considered.


2008 ◽  
Vol 19 (21) ◽  
pp. 215706 ◽  
Author(s):  
K Zhang ◽  
Y Chai ◽  
M M F Yuen ◽  
D G W Xiao ◽  
P C H Chan

Sign in / Sign up

Export Citation Format

Share Document