III. Energy

1972 ◽  
Vol 62 ◽  
pp. 61-74
Author(s):  
G.F. Ray

When we last made a medium-term energy forecast, in 1967, we said that it was ‘highly speculative to express any view about the division of …. energy demand between primary fuels and in particular about the demand for coal’ because of two factors: the emergence of natural gas and the degree of protection given to coal. Meanwhile natural gas has been adopted on a substantial scale—it already accounted (in terms of coal equivalent) for about 5 per cent of the supply of primary energy in 1970—and significant deposits of petroleum have been discovered in the North Sea. The flow of oil from this source seems sure to have begun by 1975, and by 1980 a large part of crude oil requirements will be covered by ‘domestic’ supplies, though the quantity available remains uncertain. Social considerations apart, this could throw a different light also on the question of protecting coal. Moreover the EEC might well be operating a common energy policy by the end of the decade and in the meanwhile there are in our view a number of other aspects of present United Kingdom energy policy which in any case call for re-examination. Thus our present forecasts are no less speculative than the earlier ones, though for rather different reasons.

2015 ◽  
Vol 31 (4) ◽  
pp. 111-138 ◽  
Author(s):  
Bożena Boryczko ◽  
Zygmunt Kolenda ◽  
Wojciech Nowak

Abstract The paper demonstrates that the possibilities of producing reliable long-term energy forecast are limited. Global economic growth is so dynamic that the changes resulting from scientific and technological progress, which we experience, do not allow for the identification of goals over longer time intervals. For this reason, forecasting up to 2035, 2040, 2060 is devoid of its fundamental value, which is the reliability of results obtained. Are predictions to be conservative (this applies to richer countries) or are they to produce a paradigm shift by, for example, strongly imposing the requirement of increasing energy security, which is important for our country? In light of the broadness of the issues, this paper is limited to considerations relating to forecasting the primary energy demand. Detailed examples are presented for the Polish energy system.


Environments ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 119 ◽  
Author(s):  
Alessia Arteconi ◽  
Luca Del Zotto ◽  
Roberto Tascioni ◽  
Khamid Mahkamov ◽  
Chris Underwood ◽  
...  

In this paper, the smart management of buildings energy use by means of an innovative renewable micro-cogeneration system is investigated. The system consists of a concentrated linear Fresnel reflectors solar field coupled with a phase change material thermal energy storage tank and a 2 kWe/18 kWth organic Rankine cycle (ORC) system. The microsolar ORC was designed to supply both electricity and thermal energy demand to residential dwellings to reduce their primary energy use. In this analysis, the achievable energy and operational cost savings through the proposed plant with respect to traditional technologies (i.e., condensing boilers and electricity grid) were assessed by means of simulations. The influence of the climate and latitude of the installation was taken into account to assess the performance and the potential of such system across Europe and specifically in Spain, Italy, France, Germany, U.K., and Sweden. Results show that the proposed plant can satisfy about 80% of the overall energy demand of a 100 m2 dwelling in southern Europe, while the energy demand coverage drops to 34% in the worst scenario in northern Europe. The corresponding operational cost savings amount to 87% for a dwelling in the south and at 33% for one in the north.


2014 ◽  
Vol 63 ◽  
pp. 7280-7289 ◽  
Author(s):  
Marit J. Mazzetti ◽  
Ragnhild Skagestad ◽  
Anette Mathisen ◽  
Nils H. Eldrup

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4337
Author(s):  
Daniel González-Prieto ◽  
Yolanda Fernández-Nava ◽  
Elena Marañón ◽  
Maria Manuela Prieto

The use of lightweight concrete for the construction of single-family houses has become increasingly popular in Spain. In this paper, single-family houses with different shape factors and window-to-wall ratios are analysed from both a thermal and environmental perspective using Passive House Planning Package (PHPP) software to calculate the energy demand. The study has been carried out for different Atlantic microclimates (coastal, inland, and mountain) in northern Spain. What most affects the thermal energy used for air conditioning is the variation of the microclimates, so the study focuses mainly on this aspect. Operational energy for heating has decreased greatly via the use of high degree of insulation and hence the next task is to decrease the total energy consumed taking into account the embodied energy. Impacts on Primary Energy and Global Warming Potential are calculated using a cradle-to-grave approach. The energy use for heating and domestic hot water is analysed for different thicknesses of insulation under three energy supply scenarios: electricity only (for 2018 and with the Spanish decarbonisation plan for 2030); heat pump plus electricity; and natural gas boiler. Even for houses with a good level of insulation, the ratio of operational-to-total impacts varies significantly: from 46% to 87% for primary energy and from 31% to 75% for global warming potential, depending on the shape factor of the house, the microclimate and the heat supply scenario. By applying future environmental policies, electricity can become a more environmentally friendly option than natural gas.


1985 ◽  
Vol 2 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Martin Hovland ◽  
James H. Sommerville

Subject Long-term energy markets outlook. Significance The International Energy Agency (IEA) has upgraded its forecast for total primary energy demand (TPED) to 2040 for the first time since it began projecting this far out in 2014. Impacts The IEA’s belief that the world is on an environmentally unsustainable path will bolster decarbonisation efforts nationally and globally. The IEA does not see oil demand peaking by 2040; this and gas’s growing share of global demand will help sustain oil and gas investment. China and India switching from coal to gas will reduce coal’s share of energy demand even though India’s official targets are optimistic.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 331 ◽  
Author(s):  
Claudia Sanchez Moore ◽  
Luiz Kulay

This study examined the effect of Carbon Capture and Storage units on the environmental, energy and economic performance of the Brazilian electric grid. Four scenarios were established considering the coupling of Calcium Looping (CaL) processes to capture CO2 emitted from thermoelectric using coal and natural gas: S1: the current condition of the Brazilian grid; S2 and S3: Brazilian grid with CaL applied individually to coal (TEC) and gas (TGN) operated thermoelectric; and S4: CaL is simultaneously coupled to both sources. Global warming potential (GWP) expressed the environmental dimension, Primary Energy Demand (PED) was the energy indicator and Levelised Cost of Energy described the economic range. Attributional Life Cycle Assessment for generation of 1.0 MWh was applied in the analysis. None of the scenarios accumulated the best indexes in all dimensions. Regarding GWP, S4 totals the positive effects of using CaL to reduce CO2 from TEC and TGN, but the CH4 emissions increased due to its energy requirements. As for PED, S1 and S2 are similar and presented higher performances than S3 and S4. The price of natural gas compromises the use of CaL in TGN. A combined verification of the three analysis dimensions, proved that S2 was the best option of the series due to the homogeneity of its indices. The installation of CaL in TECs and TGNs was effective to capture and store CO2 emissions, but the costs of this system should be reduced and its energy efficiency still needs to be improved.


1972 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
R.J.S. Sherwin

We are wholly dependent upon energy of solar, terrestrial and celestial origin. Contributions from any basically new form of energy are unlikely. Fossil fuels are the basis of modern economies, crude oil being dominant.Overall energy demand and the considerable, special merits of crude oil and natural gas will lead to enormous demand for these two commodities in the coming decades. Oil and gas lend themselves to the economies of scale which are as important as technical factors. Vigorous and efficient world-wide exploration and research and development in improved recovery would appear urgent and important. A shortfall in these commodities could have serious economic repercussions world-wide. A massive shortfall could be disastrous.Research and development in coal, oil shale, tar sands, heavy oil, nuclear fracturing of reservoir rocks and fundamental issues to improve overall efficiency in using resources are worth early expenditure. Doubling total system efficiency or recovery percentage would each be equivalent to doubling proven reserves.Australia seems fairly well endowed with natural gas and brown coal but the locations with respect to large population centres are less than ideal. Reserves of uranium are also substantial. There could be serious shortages of black coal and oil resources. A good balance of components might not be easy to achieve if national security were given due weight. For example, to maintain its industrial economic growth Australia needs imported crude oil as a major contributor to primary energy consumption in spite of vulnerability to foreign control of supply and price.


2013 ◽  
Vol 58 (3) ◽  
pp. 789-804
Author(s):  
Paweł Frączek ◽  
Maciej Kaliski ◽  
Paweł Siemek

Abstract The aim of this paper is to discuss the conditions for the modernization of the energy sector in the Netherlands following the discovery of natural gas deposits in the country and a rapidly growing importance of this fuel. Hence the paper presents the essence of the model of transition management in the energy sector. It also shows the nature of changes in the structure of primary energy sources in the Netherlands and the decisive factors that led to the prominent role of natural gas in this country. These considerations formed the basis for discussion on the contemporary energy policy in the Netherlands.


2013 ◽  
Vol 04 (supp01) ◽  
pp. 1340006 ◽  
Author(s):  
FRANZISKA HOLZ ◽  
CHRISTIAN VON HIRSCHHAUSEN

This paper summarizes the approaches to and the implications of bottom–up infrastructure modeling in the framework of the EMF28 model comparison "Europe 2050: The Effects of Technology Choices on EU Climate Policy". It includes models covering all the sectors currently under scrutiny by the European Infrastructure Priorities: Electricity, natural gas, and CO 2. Results suggest that some infrastructure enhancement is required to achieve the decarbonization, and that the network development needs can be attained in a reasonable timeframe. In the electricity sector, additional cross-border interconnection is required, but generation and the development of low-cost renewables is a more challenging task. For natural gas, the falling total consumption could be satisfied by the current infrastructure in place, and even in a high-gas scenario the infrastructure implications remain manageable. Model results on the future role of Carbon Capture, Transport, and Sequestration (CCTS) vary, and suggest that most of the transportation infrastructure might be required in and around the North Sea.


Sign in / Sign up

Export Citation Format

Share Document