ENERGY — MAJOR SOURCES AND CONSUMPTION

1972 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
R.J.S. Sherwin

We are wholly dependent upon energy of solar, terrestrial and celestial origin. Contributions from any basically new form of energy are unlikely. Fossil fuels are the basis of modern economies, crude oil being dominant.Overall energy demand and the considerable, special merits of crude oil and natural gas will lead to enormous demand for these two commodities in the coming decades. Oil and gas lend themselves to the economies of scale which are as important as technical factors. Vigorous and efficient world-wide exploration and research and development in improved recovery would appear urgent and important. A shortfall in these commodities could have serious economic repercussions world-wide. A massive shortfall could be disastrous.Research and development in coal, oil shale, tar sands, heavy oil, nuclear fracturing of reservoir rocks and fundamental issues to improve overall efficiency in using resources are worth early expenditure. Doubling total system efficiency or recovery percentage would each be equivalent to doubling proven reserves.Australia seems fairly well endowed with natural gas and brown coal but the locations with respect to large population centres are less than ideal. Reserves of uranium are also substantial. There could be serious shortages of black coal and oil resources. A good balance of components might not be easy to achieve if national security were given due weight. For example, to maintain its industrial economic growth Australia needs imported crude oil as a major contributor to primary energy consumption in spite of vulnerability to foreign control of supply and price.

2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2018 ◽  
Vol 58 (2) ◽  
pp. 557
Author(s):  
Barry A. Goldstein

Facts are stubborn things; and whatever may be our wishes, our inclinations, or the dictates of our passion, they cannot alter the state of facts and evidence (Adams 1770). Some people unfamiliar with upstream petroleum operations, some enterprises keen to sustain uncontested land use, and some people against the use of fossil fuels have and will voice opposition to land access for oil and gas exploration and production. Social and economic concerns have also arisen with Australian domestic gas prices tending towards parity with netbacks from liquefied natural gas (LNG) exports. No doubt, natural gas, LNG and crude-oil prices will vary with local-to-international supply-side and demand-side competition. Hence, well run Australian oil and gas producers deploy stress-tested exploration, delineation and development budgets. With these challenges in mind, successive governments in South Australia have implemented leading-practice legislation, regulation, policies and programs to simultaneously gain and sustain trust with the public and investors with regard to land access for trustworthy oil and gas operations. South Australia’s most recent initiatives to foster reserve growth through welcomed investment in responsible oil and gas operations include the following: a Roundtable for Oil and Gas; evergreen answers to frequently asked questions, grouped retention licences that accelerate investment in the best of play trends; the Plan for ACcelerating Exploration (PACE) Gas Program; and the Oil and Gas Royalty Return Program. Intended and actual outcomes from these initiatives are addressed in this extended abstract.


2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2021 ◽  
Vol 11 ◽  
pp. 55-61
Author(s):  
Thuong San Ngo

Oil and gas is a non-renewable resource that plays an important role in the economy. It is forecasted that by the middle of the twenty-first century, oil and gas still holds the leading position in primary energy balance in many countries. The world energy consumption in 2020 was over 4.1 billion tons of oil and 3,853 billion m3 of gas [1]. During 60 years of construction and development, Vietnam's oil and gas industry has made important contributions to the economy, especially helping the country overcome the energy crisis and budget deficit in the 1990s. By the end of 2020, the total production amounted to over 424 million tons of oil and condensate, and over 160 billion m3 of gas; at one time even contributing nearly 30% of the State budget and 22 - 25% of the GDP. Especially, the formation of important coastal petroleum industrial zones and oil and gas projects on the continental shelf have contributed to ensuring national sovereignty and national security. The demand for oil and gas in the energy balance increases rapidly with the speed of socio-economic development. It is forecasted that in the near future, Vietnam will no longer be self-sufficient in supply and must import completely to meet the country's energy demand. In parallel with proactively implementing urgent technical and technological solutions, Vietnam's oil and gas industry needs mechanisms to increase reserves and maintain oil and gas output, as well as prepare the next steps for transition to energy forms with low greenhouse gas emissions and renewable energy.


2016 ◽  
Vol 5 (3) ◽  
pp. 51-67
Author(s):  
Mohammad Mehdi Ghiasi ◽  
Alireza Aslani ◽  
Younes Noorollahi

The energy demand has increased dramatically in the recent decades. Due to the limitations and environmental effects of fossil fuels, secure level of energy supply is vital for economic and social development. This work is to review the energy sector in South Africa. After that, the consumptions of coal, oil, natural gas, and nuclear energy are estimated by employing simple exponential smoothing methodology. Finding shows that the primary energy consumption in the South Africa is correlated as a function of population growth rate, industrial growth rate, and GDP.


2011 ◽  
Vol 133 (01) ◽  
pp. 24-29 ◽  
Author(s):  
John Reilly ◽  
Allison Crimmins

This article predicts future global energy demand under a business-as-usual scenario. According to the MIT projections, conventional technology supported by fossil fuels will continue to dominate under a business-as-usual scenario. In fact, in the absence of climate policies that would impact energy prices, fossil fuels will supply nearly 80% of global primary energy demand in 2100. Alternative energy technologies will expand rapidly. Non-fossil fuel use will grow from 13% to 20% by 2100, with renewable electricity production expanding nearly tenfold and nuclear energy increasing by a factor of 8.5. However, those sources currently provide such a small share of the world's energy that even rapid growth is not enough to significantly displace fossil fuels. In spite of the growth in renewables, the projections indicate that coal will remain among the least expensive fuel sources. Non-fossil fuel alternatives, such as renewable energy and nuclear energy, will be between 40% and 80% more expensive than coal.


Author(s):  
Matthieu Vierling ◽  
Michel Moliere ◽  
Paul Glaser ◽  
Richard Denolle ◽  
Sathya Nayani ◽  
...  

Abstract Gas turbines are often the master pieces of the utilities that power Oil and Gas (O&G) installations as they most often operate in off-grid mode and must reliably deliver the electric power and the steam streams required by all the Exploration/Production (EP) or refining processes. In addition to reliability, fuel flexibility is an important score card of gas turbines since they must permanently accommodate the type of fuel which is available on the particular O&G site. For instance, during the operation of an associated gas field, crude oil comes out from the well heads as the gas reserves are declining or depleted. The utility gas turbine must then be capable to successively burn natural gas and crude oil and often to co-fire both fuels. An important feature of crude oils is that their combustion tends to emit significantly more particulate matter (PM) than do distillate oil and natural gas as they contain some heavier hydrocarbon ends. Taking account of the fact that some alternative liquid fuels emit more particulates matter (PM) than distillate oils, GE has investigated a class of soot suppressant additives that have been previously tested on light distillate oil (No 2 DO). As a continuation of this development, these products have been field-tested at an important refining site where several Frame 6B gas turbines have been converted from natural gas to crude oil with some units running in cofiring mode. This field test showed that proper injections of these fuel additives, at quite moderate concentration levels, enable a substantial abatement of the PM emissions and reduction of flue gas opacity. This paper outlines the main outcomes of this field campaign and consolidates the overall results obtained with this smoke suppression technology.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4337
Author(s):  
Daniel González-Prieto ◽  
Yolanda Fernández-Nava ◽  
Elena Marañón ◽  
Maria Manuela Prieto

The use of lightweight concrete for the construction of single-family houses has become increasingly popular in Spain. In this paper, single-family houses with different shape factors and window-to-wall ratios are analysed from both a thermal and environmental perspective using Passive House Planning Package (PHPP) software to calculate the energy demand. The study has been carried out for different Atlantic microclimates (coastal, inland, and mountain) in northern Spain. What most affects the thermal energy used for air conditioning is the variation of the microclimates, so the study focuses mainly on this aspect. Operational energy for heating has decreased greatly via the use of high degree of insulation and hence the next task is to decrease the total energy consumed taking into account the embodied energy. Impacts on Primary Energy and Global Warming Potential are calculated using a cradle-to-grave approach. The energy use for heating and domestic hot water is analysed for different thicknesses of insulation under three energy supply scenarios: electricity only (for 2018 and with the Spanish decarbonisation plan for 2030); heat pump plus electricity; and natural gas boiler. Even for houses with a good level of insulation, the ratio of operational-to-total impacts varies significantly: from 46% to 87% for primary energy and from 31% to 75% for global warming potential, depending on the shape factor of the house, the microclimate and the heat supply scenario. By applying future environmental policies, electricity can become a more environmentally friendly option than natural gas.


2015 ◽  
Vol 33 (3-4) ◽  
pp. 175-185 ◽  
Author(s):  
Benjamin Valdez ◽  
Michael Schorr ◽  
Jose M. Bastidas

AbstractCorrosion is a crucial worldwide problem that strongly affects the oil and gas industry. Natural gas (NG) is a source of energy used in industrial, residential, commercial, and electric applications. The abundance of NG in many countries augurs a profitable situation for the vast energy industry. NG is considered friendlier to the environment and has lesser greenhouse gas emissions compared with other fossil fuels. In the last years, shale gas is increasingly exploited in the USA and in Europe, using a hydraulic fracturing (fracking) technique for releasing gas from the bedrock by injection of saline water, acidic chemicals, and sand to the wells. Various critical sectors of the NG industry infrastructure suffer from several types of corrosion: steel casings of production wells and their drilling equipment, gas-conveying pipelines including pumps and valves, plants for regasification of liquefied NG, and municipal networks of NG distribution to the consumers. Practical technologies that minimize or prevent corrosion include selection of corrosion-resistant engineering materials, cathodic protection, use of corrosion inhibitors, and application of external and internal paints, coatings, and linings. Typical cases of corrosion management in the NG industry are presented based on the authors’ experience and knowledge.


1972 ◽  
Vol 62 ◽  
pp. 61-74
Author(s):  
G.F. Ray

When we last made a medium-term energy forecast, in 1967, we said that it was ‘highly speculative to express any view about the division of …. energy demand between primary fuels and in particular about the demand for coal’ because of two factors: the emergence of natural gas and the degree of protection given to coal. Meanwhile natural gas has been adopted on a substantial scale—it already accounted (in terms of coal equivalent) for about 5 per cent of the supply of primary energy in 1970—and significant deposits of petroleum have been discovered in the North Sea. The flow of oil from this source seems sure to have begun by 1975, and by 1980 a large part of crude oil requirements will be covered by ‘domestic’ supplies, though the quantity available remains uncertain. Social considerations apart, this could throw a different light also on the question of protecting coal. Moreover the EEC might well be operating a common energy policy by the end of the decade and in the meanwhile there are in our view a number of other aspects of present United Kingdom energy policy which in any case call for re-examination. Thus our present forecasts are no less speculative than the earlier ones, though for rather different reasons.


Sign in / Sign up

Export Citation Format

Share Document