Improving Soil Health through Climate-smart Agriculture in Sub-Saharan Africa – The Essential Role of Farmers’ Knowledge

Author(s):  
Samuel Eze ◽  
Andrew Dougill ◽  
Steven Banwart ◽  
Susannah Sallu ◽  
Rashid Mgohele ◽  
...  

<p>Soil health is key to building resilience into agricultural and food systems in sub-Saharan Africa (SSA), where climate change presents a major challenge and unsustainable land management practices have exacerbated land degradation. A suite of interventions labelled climate-smart agriculture (CSA) such as conservation agriculture (cover cropping, mulching, crop rotation, intercropping, minimum/zero tillage, crop residue management), soil and water conservation (contour planting, terraces and bunds, planting pits, and irrigation) and agroforestry are promoted in SSA to improve soil health but adoption among smallholder farmers remains low. A strong evidence base on the impacts of CSA interventions on soil health in different agro-ecosystems in SSA is lacking. This contributes to weak policies and institutional support as well as conflicting messages that farmers receive about CSA impacts, which limit their adoption and lead to disadoption. Farmers’ knowledge of their soils influences their land management decisions and is an important factor in the uptake of CSA interventions. Using a multi-method approach that combines conventional soil testing and farmers’ visual techniques, we examined the impacts of soil and water conservation techniques on soil health indicators in the East Usambara Mountains of Tanzania. The link between farmers’ soil knowledge and their land management decisions was also explored in a wider review of lessons from the African Highlands. Farmers’ observed changes in selected soil health indicators, which influenced their land management decisions did not always match results of conventional soil testing, highlighting the need for integrating farmers’ observational techniques and conventional soil testing for a more targeted and comprehensive assessment of soil health. A hybrid approach to soil assessment is outlined that could foster greater uptake of sustainable land management practices including CSA by farmers in SSA and should be proactively pursued by soil scientists to ensure that their efforts translate to actions by land managers.</p>

2021 ◽  
Vol 13 (17) ◽  
pp. 9909
Author(s):  
Andrew J. Dougill ◽  
Thirze D. G. Hermans ◽  
Samuel Eze ◽  
Philip Antwi-Agyei ◽  
Susannah M. Sallu

Efforts to meet the growing demand for food across Africa have led to unsustainable land management practices that weaken the resilience of African Food Systems. Soil health is key to building more climate-resilient agricultural systems and can be improved through Climate-Smart Agriculture (CSA) practices that also enhance soil carbon storage. Many CSA practices are being implemented by African farmers, whereas others are being actively promoted but adoption remains low due to multiple factors including weak policy integration, limited institutional support, and inadequate agricultural extension advice. This Short Communications paper presents overview findings from trans-disciplinary research projects from Southern, East, and West Africa to evaluate the potential importance of integrated participatory soil health studies designed to inform context-specific recommendations and policies for resilient African food systems. The use of soil health indicators to measure the effectiveness of implemented CSA practices including Conservation Agriculture in maize-based systems and Soil and Water Conservation in Highland African systems are discussed. The paper identifies how more integrated research can help to enable shared learning and the enhanced knowledge exchange required for the upscaling of sustainable land management practices enabled through enhanced farmer participation in the chain of CSA activities from intervention design to community evaluation of impacts.


2017 ◽  
Vol 5 (1) ◽  
pp. 50
Author(s):  
Kalifa TRAORE ◽  
Daouda SIDIBE ◽  
Harouna COULIBALY

Climate variability and change are recognized as the greatest challenge to crop production and food security in sub-Saharan Africa. This work assesses farmers’ perception on the contribution of improved varieties of sorghum and millet in the search for food security in Cinzana rural commune of Mali in the current context of climate change.The methodology was based on focus group surveys with both, the decentralized technical services, administrative and municipal authorities, NGOs, farmer organizations and producers but also farmer exchanges visits on improved varieties tested in farmer’s field.The result shows that climate change is described by the majority of farmers (87%) as decrease in rainfall amount and length of rainy seasons, high increases in temperature and high deforestation and water scarcity. Unpredictability of climate, (80%), drought (70%) and heavy rain (65%) occurrence were identified as major perception of farmers on risks in climate for crop production and soil degradation. After farmers’ study tour, 80% of the participants mentioned a better growth of plants and increase of soil moisture with the use of contour ridges tillage as a water conservation technology. Adapted cycle (55%) and higher yield (37%) of improved varieties were farmer’s main drivers for adoption of improved millet and sorghum varieties.The study revealed that local farmers have substantial knowledge on climate variabilities and risks and also are aware of some adaptation strategies. However, for wide scale adoption of effective strategies, capacity strengthening appeared a prerequisite.


1996 ◽  
Vol 25 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Dana Berner ◽  
Robert Carsky ◽  
Kenton Dashiell ◽  
Jennifer Kling ◽  
Victor Manyong

Striga hermonthica, an obligate root parasite of grasses, Is one of the most severe constraints to cereal production in sub-Saharan Africa. In the recent past, prior to increased production pressure on land, S. hermonthica was controlled in African farming systems by prolonged crop rotations with bush fallow. Because of increasing need for food and concomitant changes in land management practices, however, these fallow rotations are no longer extensively used. Shorter crop rotations and fallow periods have also led to declines in soil fertility which present a very serious threat to African food production. A sustainable solution will be an integrated approach that simultaneously addresses both of these major problems. An integrated programme that replaces traditional bush fallow rotation with non-host nitrogen-fixing legume rotations, using cultivars selected for efficacy in germinating S. hermonthica seeds, is outlined. The programme includes use of S. hermonthlca-free planting material, biological control, cultural control to enhance biological suppressiveness, host-plant resistance, and host-seed treatments.


2021 ◽  
Author(s):  
Kristal Jones ◽  
Andreea Nowak ◽  
Erika Berglund ◽  
Willow Grinnell ◽  
Emmanuel Temu ◽  
...  

Abstract National governments across Sub-Saharan Africa include climate-smart agriculture (CSA) - context-specific interventions that support resilience, productivity, and climate mitigation-in plans and policies and strategies to jointly address climate change, agricultural production and rural livelihood goals. This paper synthesizes the evidence on field-based CSA management practices generated through ten years of research led by the CGIAR in Tanzania, an agriculturally diverse country in East Africa that has prioritized climate-smart agriculture practices in its climate adaptation strategies. Tanzania provides an illustrative example of how countries can use evidence of impacts, synergies and tradeoffs to prioritize activities for sustainable development.


2018 ◽  
Vol 27 (3) ◽  
pp. 34001 ◽  
Author(s):  
Robert B. Zougmoré ◽  
Samuel T. Partey ◽  
Mathieu Ouédraogo ◽  
Emmanuel Torquebiau ◽  
Bruce M. Campbell

In the literature, a lot of information is available about climate change perceptions and impacts in sub-Saharan Africa. However, there is limited attention in the region to emerging initiatives, technologies and policies that are tailored to building the adaptive capacity of agricultural systems to climate change and variability. In this paper, we discuss the prospects for climate-smart agriculture technologies and enabling policies in dealing with climate change and variability at different sub-regional levels of sub-Saharan Africa to sustain farm productivity and livelihoods of agrarian communities. The review provides substantial information suggesting that without appropriate interventions, climate change and variability will affect agricultural yields, food security and add to the presently unaceptable levels of poverty in sub-Saharan Africa. Although some of them were already existing, the past decades have seen the development and promotion of climate-smart agriculture innovations such as the use of high yielding drought tolerant crop varieties, climate information services, agricultural insurance, agroforestry, water harvesting techniques, integrated soil fertility management practices, etc. In the context of climate change, this appears as a stepping up approach to sustainably improving farm productivity, rural livelihoods and adaptive capacity of farmers and production systems while contributing to mitigation. The development of regional, sub-regional and national climate change policies and plans targeted at mitigating climate change and improving adaptive capacity of the African people have also been developed to enable mainstreaming of climate-smart agriculture into agricultural development plans. Financial commitments from governments and development agencies will be crucial for improving large scale adoption of climate-smart agriculture.


2021 ◽  
Vol 13 (3) ◽  
pp. 1158
Author(s):  
Cecilia M. Onyango ◽  
Justine M. Nyaga ◽  
Johanna Wetterlind ◽  
Mats Söderström ◽  
Kristin Piikki

Opportunities exist for adoption of precision agriculture technologies in all parts of the world. The form of precision agriculture may vary from region to region depending on technologies available, knowledge levels and mindsets. The current review examined research articles in the English language on precision agriculture practices for increased productivity among smallholder farmers in Sub-Saharan Africa. A total of 7715 articles were retrieved and after screening 128 were reviewed. The results indicate that a number of precision agriculture technologies have been tested under SSA conditions and show promising results. The most promising precision agriculture technologies identified were the use of soil and plant sensors for nutrient and water management, as well as use of satellite imagery, GIS and crop-soil simulation models for site-specific management. These technologies have been shown to be crucial in attainment of appropriate management strategies in terms of efficiency and effectiveness of resource use in SSA. These technologies are important in supporting sustainable agricultural development. Most of these technologies are, however, at the experimental stage, with only South Africa having applied them mainly in large-scale commercial farms. It is concluded that increased precision in input and management practices among SSA smallholder farmers can significantly improve productivity even without extra use of inputs.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 338
Author(s):  
Charity M. Wangithi ◽  
Beatrice W. Muriithi ◽  
Raphael Belmin

The invasive fruit fly Bactrocera dorsalis poses a major threat to the production and trade of mango in sub-Saharan Africa. Farmers devise different innovations to manage the pest in an attempt to minimize yield loss and production costs while maximizing revenues. Using survey data obtained from Embu County, Kenya, we analyzed farmers’ knowledge and perception as regards the invasive fruit fly, their innovations for the management of the pest, and the determinants of their adoption and dis-adoption decisions of recently developed and promoted integrated pest management (IPM) technologies for suppression of the pest. The results show that farmers consider fruit flies as a major threat to mango production (99%) and primarily depend on pesticides (90%) for the management of the pest. Some farmers (35%) however use indigenous methods to manage the pest. Though farmers possess good knowledge of different IPM strategies, uptake is relatively low. The regression estimates show that continued use of IPM is positively associated with the gender and education of the household head, size of a mango orchard, knowledge on mango pests, training, contact with an extension officer, and use of at least one non-pesticide practice for fruit fly management, while IPM dis-adoption was negatively correlated with the size of the mango orchard, practice score and use of indigenous innovations for fruit fly management. We recommend enhancing farmer′s knowledge through increased access to training programs and extension services for enhanced adoption of sustainable management practices for B. dorsalis.


Author(s):  
Chinedu Egbunike ◽  
Nonso Okoye ◽  
Okoroji-Nma Okechukwu

Climate change is a major threat to agricultural food production globally and locally. It poses both direct and indirect effects on soil functions. Thus, agricultural management practices has evolved to adaptation strategies in order to mitigate the risks and threats from climate change. The study concludes with a recommendation the coconut farmers should explore the idea of soil biodiversity in a bid to mitigate the potential negative impact of climate related risk on the farming. The study proffers the need for adopting sustainable agricultural practices to boost local coconut production. This can contribute to the simultaneous realisation of two of the Sustainable Development Goals (SDGs) of the United Nations: SDG 2 on food security and sustainable agriculture and SDG 13 on action to combat climate change and its impacts. The study findings has implications for tackling climate change in Sub-Saharan Africa and in particular Nigeria in order to boost local agricultural production and coconut in particular without negative environmental consequences and an ability to cope with climate change related risks.


Soil Research ◽  
2009 ◽  
Vol 47 (3) ◽  
pp. 340
Author(s):  
B. Kelly ◽  
C. Allan ◽  
B. P. Wilson

'Soil health' programs and projects in Australia's agricultural districts are designed to influence farmers' management behaviours, usually to produce better outcomes for production, conservation, and sustainability. These programs usually examine soil management practices from a soil science perspective, but how soils are understood by farmers, and how that understanding informs their farm management decisions, is poorly documented. The research presented in this paper sought to better understand how dryland farmers in the Billabong catchment of southern New South Wales use soil indicators to inform their management decisions. Thematic content analysis of transcripts of semi-structured, face-to-face interviews with farmers suggest several themes that have implications for soil scientists and other professionals wishing to promote soil health in the dryland farming regions of south-eastern Australia. In particular, all soil indicators, including those related to soil 'health', need to relate to some clear, practical use to farmers if they are to be used in farm decision making. This research highlights a reliance of the participants of this research on agronomists. Reliance on agronomists for soil management decisions may result in increasing loss of connectivity between farmers and their land. If this reflects a wider trend, soil health projects may need to consider where best to direct their capacity-building activities, and/or how to re-empower individual farmers.


Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 61
Author(s):  
Mingxin Guo

In the past decade soil health has been intensively studied as a science and practiced as a means to help improve the global social, environmental, and economic sustainability. This paper reviews the recent advances of the scientific soil health system. The current understanding and interpretation of soil health from the perspectives of soil functions, processes, and properties is summarized. Multi-tier soil health indicators were selected from relevant soil physical, chemical, and biological parameters. A suite of soil health assessment methods have been developed, such as soil health card, Solvita soil health tests, Haney soil health test, and comprehensive assessment of soil health. An array of soil health management practices have been recommended, including proper land use, crop rotation, cover crops, conservation tillage, soil organic amendment, crop-range-livestock integration, and rotational grazing. Overall, the recommended soil health indicators and assessment methods need further validation and improvement in relevance, scientific validity, practicality, and local adaptation. Continuous research, education, and outreach efforts are warranted to promote localized development, adoption, and implementation of soil health assessment and management.


Sign in / Sign up

Export Citation Format

Share Document