Factors Affecting the Impression of Vehicle Speed Gained from a Video Recording

1995 ◽  
Vol 81 (2) ◽  
pp. 472-474
Author(s):  
Stuart Lines ◽  
John Searle

During court hearings arising from traffic accidents, videotaped recordings are often used to give a ‘drive through’ view of the accident scene. A panel of 24 subjects evaluated the impression of speed created by such recordings. Focal length of the camera lens has a marked effect.

2017 ◽  
Vol 2659 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Tai-Jin Song ◽  
Jaehyun (Jason) So ◽  
Jisun Lee ◽  
Billy M. Williams

This study investigated the main factors affecting the severity of injury to pedestrians in taxi–pedestrian crashes on urban arterial roads. Video data recorded by an in-car black box were used. Because the video data provided direct crash observation, they were more reliable than the crash data, and video images and speed profiles retrieved from the black box were advantageous for safety studies. For analysis of the black box data, this study defined new explanatory variables that affected injury severity; these variables could not have been identified by the conventional method, which was based on crash reports. A multiple-indicator and multiple-cause model was used to investigate the relationship between the explanatory variables and injury severity. A total of 484 taxi–pedestrian crash scenes over 2 years was used for the multivariate analysis in the city of Incheon, South Korea. The crash characteristics most strongly associated with increased crash severity were failure by the pedestrian to watch for approaching vehicles, jaywalking by the pedestrian, the pedestrian being elderly, excessive vehicle speed, failure by the driver to immediately stop, limited driver vision, and nighttime. This study emphasized the potential of individualized black box video recording data for crash severity analysis and investigation of the causal factors of crashes.


Author(s):  
Xinhua Mao ◽  
Changwei Yuan ◽  
Jiahua Gan ◽  
Shiqing Zhang

As a critical configuration of interchanges, the weaving section is inclined to be involved in more traffic accidents, which may bring about severe casualties. To identify the factors associated with traffic accidents at the weaving section, we employed the multinomial logistic regression approach to identify the correlation between six categories of risk factors (drivers’ attributes, weather conditions, traffic characteristics, driving behavior, vehicle types and temporal-spatial distribution) and four types of traffic accidents (rear-end, side wipe, collision with fixtures and rollover) based on 768 accident samples of an observed weaving section from 2016 to 2018. The modeling results show that drivers’ gender and age, weather condition, traffic density, weaving ratio, vehicle speed, lane change behavior, private cars, season, time period, day of week and accident location are important factors affecting traffic accidents at the weaving section, but they have different contributions to the four traffic accident types. The results also show that traffic density of ≥31 vehicle/100 m has the highest risk of causing rear-end accidents, weaving ration of ≥41% has the highest possibility to bring about a side wipe incident, collision with fixtures is the most likely to happen in snowy weather, and rollover is the most likely incident to occur in rainy weather.


2014 ◽  
Vol 71 (3) ◽  
Author(s):  
Sitti Asmah Hassan ◽  
Othman Che Puan ◽  
Nordiana Mashros ◽  
Nur Sabahiah Abdul Sukor

Overtaking is one of many important behaviour considered in the analysis of road traffic accidents and performance of single carriageway road. This paper seeks to determine factors affecting the speed of an overtaking vehicle. The study was conducted for a single carriageway road section which is flat and straight so that there is no effect of sight distance on overtaking. Overtaking behaviour data were recorded using a video camera. The data extracted from the video recordings were the decision times, overtaking times, overtaking distances, safety margins, accepted and rejected gaps, headways at the start of the overtaking manoeuvres, headways at the end of the overtaking manoeuvres, speed of the overtaken vehicle, speed of the overtaking vehicle at the end of the overtaking and acceleration of the overtaking vehicle during the overtaking. The data were analysed statistically to establish relationships between the various overtaking parameters. This study found that the speed of overtaking vehicle was affected by the speed of overtaken vehicle, drivers’ decision times, safety margin, overtaking times and acceleration.


2020 ◽  
Vol 10 (3) ◽  
pp. 859 ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun-Chae Chung ◽  
Gyoo-Jae Choi ◽  
MooYoung Choi

This study examines the human behavioral dynamics of pedestrians crossing a street with vehicular traffic. To this end, an experiment was constructed in which human participants cross a road between two moving vehicles in a virtual reality setting. A mathematical model is developed in which the position is given by a simple function. The model is used to extract information on each crossing by performing root-mean-square deviation (RMSD) minimization of the function from the data. By isolating the parameter adjusted to gap features, we find that the subjects primarily changed the timing of the acceleration to adjust to changing gap conditions, rather than walking speed or duration of acceleration. Moreover, this parameter was also adjusted to the vehicle speed and vehicle type, even when the gap size and timing were not changed. The model is found to provide a description of gap affordance via a simple inequality of the fitting parameters. In addition, the model turns out to predict a constant bearing angle with the crossing point, which is also observed in the data. We thus conclude that our model provides a mathematical tool useful for modeling crossing behaviors and probing existing models. It may also provide insight into the source of traffic accidents.


2014 ◽  
Vol 505-506 ◽  
pp. 1137-1142
Author(s):  
Li Lin ◽  
Ting Ting Lv

In the process of the traffic accidents confirmation, the identification of vehicle speed when accident occurred is often an important basis for accident confirmation. The paper firstly discusses the models of mechanics and solving method for the vehicle front face, rear end, sides face ,slanted side collision based on the theory of collision mechanics ,it describes how to identify the vehicle rate and collision angle based on the model simplification, the theoretical analysis for dealing with the complicated accidents. The common and formulas are studied based on the classical collision mechanics method. The application range, parameters involved in selection and influence of the formulas are analyzed in detail. Finally the program based on C# is developed according to the identified calculation process for vehicle speed of traffic accident. The vehicle speed is obtained by selecting the collision type, entering the relevant accident pattern, inputting the parameters and clicking the command button .The application can store, modify and display results conveniently , improve efficiency on vehicle speed identification effectively and reduce the processing cycle of traffic accident availably.


2014 ◽  
Vol 505-506 ◽  
pp. 1148-1152
Author(s):  
Jian Qun Wang ◽  
Xiao Qing Xue ◽  
Ning Cao

The road traffic accidents caused huge economic losses and casualties, so it had been focused by the researchers. Lane changing characteristic is the most relevant characteristic with safety. The intent of lane changing was discussed. Firstly, the factors affecting the intent were analyzed, the speed satisfaction value and the space satisfaction value were proposed; then the data from the University of California, Berkeley was extracted and the number of vehicles changed lane more often and the vehicle ID were obtained; the BP neural network classification model was established, it was trained and testified by actual data. The results shown the method could predict the intent accurately.


2003 ◽  
Vol 1855 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Christopher Strong ◽  
Scott Lowry ◽  
Peter McCarthy

An innovative application of time-lapse video recording is used to assist in an evaluation of a highway safety improvement. The improvement is an icy-curve warning system near Fredonyer Summit in northern California that activates real-time motorist warnings via extinguishable message signs, based on weather readings collected from road weather information systems. A measure of effectiveness is whether motorist speed is reduced as a result of real-time warnings to drivers. Why indirect speed measurement with video was preferred over radar for this case is discussed, as is how specific methodological issues related to the custom-built equipment, including camera location and orientation, distance benchmarking, and data collection and reduction. Theoretical and empirical accuracy measurements show that the video surveillance trailers yield results comparable to radar and, hence, would be applicable for studies in which speed change is measured. Because this particular technology had not been used previously, several lessons are documented that may help determine where and how similar equipment may be optimally used in future studies.


2013 ◽  
Vol 333-335 ◽  
pp. 805-810 ◽  
Author(s):  
Rong Bao Chen ◽  
Ning Li ◽  
Hua Feng Xiao ◽  
Wei Hou

With the development of economy, there are an increasing number of cars as well as traffic accidents, thus intensifying the need to take measures to reduce traffic accidents and protect the safety of life and property. Vehicle distance is one of the most important indexes of traffic safety. The measurement of safety vehicle distance has become an increasingly hot research area of intelligent transportation. Through analyzing the basic principle of stereo vision and calibrating the parameters of the CCD sensors both inside and outside, this paper comes up with a method to measure the former vehicle distance based on stereo vision and DSP. Once the vehicle speed and distance form a non-security association, it will give a warning, and upload data or force speed-limiting. According to the different coordinates of the obtained images of the target vehicle from the left and the right sensor, this method can identify feature points, calculate distance to the target vehicle, and analyze the security of vehicle distance. The experimental results show that this method has wide measurement range, high measurement accuracy, and fast operation rate, thus it can meet the actual needs of the measurement of safe vehicle distance in intelligent transportation.


Sign in / Sign up

Export Citation Format

Share Document