Effect of Training Exercise on Urinary Brain-derived Neurotrophic Factor Levels and Cognitive Performances in Overweight and Obese Subjects

2016 ◽  
Vol 120 (1) ◽  
pp. 70-87 ◽  
Author(s):  
Angelo Russo ◽  
Livia Buratta ◽  
Roberto Pippi ◽  
Cristina Aiello ◽  
Claudia Ranucci ◽  
...  

Exercise-mediated, brain-derived neurotrophic factor induction benefits health and cognitive functions. The multifaceted interplay between physical activity, urinary brain-derived neurotrophic factor levels and cognitive functioning has been largely neglected in previous literature. In this pilot study, two bouts of training exercise (65% and 70% of heart rate reserve) influenced urinary brain-derived neurotrophic factor levels and cognitive performances in 12 overweight and obese participants. Percent heart rate reserve, expenditure energy, brain-derived neurotrophic factor urinary levels and cognitive performances were measured before and after the exercise. No significant variations in energy expenditure were observed, while differences of heart rate reserve between two groups were maintained. Both bouts of training exercise induced a similar reduction in urinary brain-derived neurotrophic factor levels. Only visuo-spatial working memory capacity at 65% of heart rate reserve showed a significant increase. These findings indicate a consistent effect of training exercise on urinary brain-derived neurotrophic factor levels and cognitive factors in overweight and obese participants.

2016 ◽  
Vol 11 (6) ◽  
pp. 824-830 ◽  
Author(s):  
Maria Francesca Piacentini ◽  
Oliver C. Witard ◽  
Cajsa Tonoli ◽  
Sarah R. Jackman ◽  
James E. Turner ◽  
...  

Context:Monitoring mood state is a useful tool for avoiding nonfunctional overreaching. Brain-derived neurotrophic factor (BDNF) is implicated in stress-related mood disorders.Purpose:To investigate the impact of intensified training-induced mood disturbance on plasma BDNF concentrations at rest and in response to exercise.Methods: Eight cyclists performed 1 wk of normal (NT), 1 wk of intensified (INT), and 1 wk of recovery (REC) training. Fasted blood samples were collected before and after exercise on day 7 of each training week and analyzed for plasma BDNF and cortisol concentrations. A 24-item Profile of Mood State questionnaire was administered on day 7 of each training week, and global mood score (GMS) was calculated.Results:Time-trial performance was impaired during INT (P = .01) and REC (P = .02) compared with NT. Basal plasma cortisol (NT = 153 ± 16 ng/mL, INT = 130 ± 11 ng/mL, REC = 150 ± 14 ng/ml) and BDNF (NT = 484 ± 122 pg/mL, INT = 488 ± 122 pg/mL, REC = 383 ± 56 pg/mL) concentrations were similar between training conditions. Likewise, similar exercise-induced increases in cortisol and BDNF concentrations were observed between training conditions. GMS was 32% greater during INT vs NT (P < .001).Conclusions: Consistent with a state of functional overreaching (FOR), impairments in performance and mood state with INT were restored after 1 wk of REC. These results support evidence for mood changes before plasma BDNF concentrations as a biochemical marker of FOR and that cortisol is not a useful marker for predicting FOR.


2021 ◽  
Author(s):  
Sarah Ahmad ◽  
Rodney Hansen ◽  
Matthew Schmolesky

AbstractResearch suggests strong inter-relationships between physical exercise, levels of brain-derived neurotrophic factor (BDNF), levels of estrogen, and the menstrual cycle, and yet no single study has examined these factors collectively in humans. The current study assessed the effect of an acute bout of vigorous aerobic exercise (20 minutes of stationary cycling at 80% of heart rate reserve) on serum BDNF and estradiol in healthy, eumenorrheic women, ages 18-28. In addition, this study determined whether basal BDNF or the exercise-induced increase in BDNF varies throughout the menstrual cycle. Thirty-four subjects were assigned to an experimental (n = 27) or control condition (n = 7). Exercise transiently increased both estradiol (51.2%) and BDNF (23.6%), and basal levels of BDNF and estradiol predicted the magnitude of the exercise-induced increases. Basal BDNF did not vary significantly throughout the menstrual cycle. Exercise-induced changes in BDNF did not correlate with menstrual cycle day or basal estradiol. Basal estradiol and basal BDNF showed a marginally significant positive correlation. Taken together, these results indicate that brief, vigorous aerobic exercise is sufficient to elevate both BDNF and estradiol in healthy women and that the menstrual cycle dramatically influences the magnitude of exercise-induced changes in estradiol, but not BDNF


1996 ◽  
Vol 81 (5) ◽  
pp. 1901-1907 ◽  
Author(s):  
Roland Favier ◽  
Esperanza Caceres ◽  
Laurent Guillon ◽  
Brigitte Sempore ◽  
Michel Sauvain ◽  
...  

Favier, Roland, Esperanza Caceres, Laurent Guillon, Brigitte Sempore, Michel Sauvain, Harry Koubi, and Hilde Spielvogel. Coca chewing for exercise: hormonal and metabolic responses of nonhabitual chewers. J. Appl. Physiol. 81(5): 1901–1907, 1996.—To determine the effects of acute coca use on the hormonal and metabolic responses to exercise, 12 healthy nonhabitual coca users were submitted twice to steady-state exercise (∼75% maximal O2 uptake). On one occasion, they were asked to chew 15 g of coca leaves 1 h before exercise, whereas on the other occasion, exercise was performed after 1 h of chewing a sugar-free chewing gum. Plasma epinephrine, norepinephrine, insulin, glucagon, and metabolites (glucose, lactate, glycerol, and free fatty acids) were determined at rest before and after coca chewing and during the 5th, 15th, 30th, and 60th min of exercise. Simultaneously to these determinations, cardiorespiratory variables (heart rate, mean arterial blood pressure, oxygen uptake, and respiratory gas exchange ratio) were also measured. At rest, coca chewing had no effect on plasma hormonal and metabolic levels except for a significantly reduced insulin concentration. During exercise, the oxygen uptake, heart rate, and respiratory gas exchange ratio were significantly increased in the coca-chewing trial compared with the control (gum-chewing) test. The exercise-induced drop in plasma glucose and insulin was prevented by prior coca chewing. These results contrast with previous data obtained in chronic coca users who display during prolonged submaximal exercise an exaggerated plasma sympathetic response, an enhanced availability and utilization of fat (R. Favier, E. Caceres, H. Koubi, B. Sempore, M. Sauvain, and H. Spielvogel. J. Appl. Physiol. 80: 650–655, 1996). We conclude that, whereas coca chewing might affect glucose homeostasis during exercise, none of the physiological data provided by this study would suggest that acute coca chewing in nonhabitual users could enhance tolerance to exercise.


2018 ◽  
Vol 7 (11) ◽  
pp. 437 ◽  
Author(s):  
I-Te Lee ◽  
Wayne Sheu

Circulating brain-derived neurotrophic factor (BDNF) predicts survival rate in patients with coronary artery disease (CAD). We examined the relationship between BDNF and renalase before and after percutaneous coronary intervention (PCI) and the role of renalase in patients with CAD. Serum BDNF and renalase levels were determined using blood samples collected before and after PCI. Incident myocardial infarction, stroke, and mortality were followed up longitudinally. A total of 152 patients completed the assessment. BDNF levels were not significantly changed after PCI compared to baseline levels (24.7 ± 11.0 vs. 23.5 ± 8.3 ng/mL, p = 0.175), although renalase levels were significantly reduced (47.5 ± 17.3 vs. 35.9 ± 11.3 ng/mL, p < 0.001). BDNF level before PCI was an independent predictor of reduction in renalase (95% confidence interval (CI): −1.371 to −0.319). During a median 4.1 years of follow-up, patients with serum renalase levels of ≥35 ng/mL had a higher risk of myocardial infarction, stroke, and death than those with renalase of <35 ng/mL (hazard ratio = 5.636, 95% CI: 1.444–21.998). In conclusion, our results show that serum BDNF levels before PCI were inversely correlated with the percentage change in renalase levels after PCI. Nevertheless, post-PCI renalase level was a strong predictor for myocardial infarction, stroke, and death.


2018 ◽  
Vol 28 (4) ◽  
pp. 31668
Author(s):  
Elham Eftekhari ◽  
Masoud Etemadifar

AIMS: To determine the effect of Mat Pilates on serum levels of interleukin-10 and brain-derived neurotrophic factor in women with multiple sclerosis.METHODS: Thirty women with multiple sclerosis with mild to moderate disability were recruited and randomly divided into equal Pilates training and Control groups. Patients in the training group accomplished a Pilates program three times a week for eight weeks. The Control group maintained their routine lifestyle. The serum level of interleukin-10 and brain-derived neurotrophic factor were measured before and after the protocol. The differences between groups were assessed by using analysis of covariance test to compare post-tests by considering covariate pre-tests (assuming a p-value <0.05 as significant).RESULTS: There were no significant changes in interleukin-10 (13.09±5.36 ng/ml in the Pilates training group compared to 13.21±4.76 ng/ml in the Control group, p= 0.81), whereas an increase in brain-derived neurotrophic factor was observed after eight-week Pilates training (11550.14±2619.60 ng/ml in the Pilates training group compared to 9664.35±3161.66 ng/ml in the Control group, p= 0.03).CONCLUSIONS: The results suggest that the intensity and duration of this protocol was not related to significant changes in interleukin-10, but was followed by an increase in brain-derived neurotrophic factor in these patients. Based on this finding, physical activity according to the individual’s ability is recommended for patients with multiple sclerosis, in parallel with drug therapy.


2010 ◽  
Vol 298 (3) ◽  
pp. H966-H973 ◽  
Author(s):  
Léna Borbouse ◽  
Gregory M. Dick ◽  
Gregory A. Payne ◽  
Brittany D. Payne ◽  
Mark C. Svendsen ◽  
...  

This investigation was designed to examine the hypothesis that impaired function of coronary microvascular large-conductance Ca2+-activated K+ (BKCa) channels in metabolic syndrome (MetS) significantly attenuates the balance between myocardial oxygen delivery and metabolism at rest and during exercise-induced increases in myocardial oxygen consumption (MV̇o2). Studies were conducted in conscious, chronically instrumented Ossabaw swine fed a normal maintenance diet (11% kcal from fat) or an excess calorie atherogenic diet (43% kcal from fat, 2% cholesterol, 20% kcal from fructose) that induces many common features of MetS. Data were collected under baseline/resting conditions and during graded treadmill exercise before and after selective blockade of BKCa channels with penitrem A (10 μg/kg iv). We found that the exercise-induced increases in blood pressure were significantly elevated in MetS swine. No differences in baseline cardiac function or heart rate were noted. Induction of MetS produced a parallel downward shift in the relationship between coronary venous Po2 and MV̇o2 ( P < 0.001) that was accompanied by a marked release of lactate (negative lactate uptake) as MV̇o2 was increased with exercise ( P < 0.005). Inhibition of BKCa channels with penitrem A did not significantly affect blood pressure, heart rate, or the relationship between coronary venous Po2 and MV̇o2 in lean or MetS swine. These data indicate that BKCa channels are not required for local metabolic control of coronary blood flow under physiological (lean) or pathophysiological (MetS) conditions. Therefore, diminished function of BKCa channels does not contribute to the impairment of myocardial oxygen-supply demand balance in MetS.


2009 ◽  
Vol 94 (12) ◽  
pp. 1153-1160 ◽  
Author(s):  
Bente K. Pedersen ◽  
Maria Pedersen ◽  
Karen S. Krabbe ◽  
Helle Bruunsgaard ◽  
Vance B. Matthews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document