scholarly journals Analysis of critical negative rake angle and friction characteristics in orthogonal cutting of AL1060 and T2

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987806 ◽  
Author(s):  
Yanchun Ding ◽  
Guangfeng Shi ◽  
Hua Zhang ◽  
Guoquan Shi ◽  
Dongdong Han

The stagnant region often appears in front of the tool cutting edge, which is caused by mechanical inlay and excessive pressing in plastic metal cutting with large negative rake angle tools at a low speed. It results in the change of the effective negative rake angle which can affect the flow characteristics of material, the quality of machined surface and the abrasion loss of cutting tools. However, the critical negative rake angle model based on the existence of the stagnant region has not been reported yet. Therefore, in order to investigate the critical negative rake angle value considering the stagnant region, a critical negative rake angle model based on the principle of minimum required energy is established, and the correctness of the theoretical model is verified by orthogonal cutting experiments. At the same time, the influence of the critical value of the large negative rake angle tool on the machined surface quality is studied through different cutting experiments. These experimental results show that the deviations of both experimental and theoretical critical negative rake angle are less than 5% during the orthogonally cutting of the aluminium (AL1060) and copper (T2) materials by the negative rake angle tool. Meanwhile, the critical negative rake angle is related to the adhesive friction coefficient of tool–workpiece contact surface. The analysis of friction characteristics shows that the deviation values of both theoretical and experimental critical negative rake angle are proportional to the coefficient of adhesive friction and the thickness of the stagnant region. Critical negative rake angle has a significant effect on roughness and residual stress of the machined surface.

2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


2012 ◽  
Vol 557-559 ◽  
pp. 1364-1368
Author(s):  
Yong Feng ◽  
Mu Lan Wang ◽  
Bao Sheng Wang ◽  
Jun Ming Hou

High-speed metal cutting processes can cause extremely rapid heating of the work material. Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement.So, the finite element(FE) method used to analyze the unique nonlinear problems during cutting process. In terms of heat-force coupled problem, the thermo-plastic FE model was proposed to predict the cutting temperature distribution using separated iterative method. Several key techniques such as material constitutive relations, tool-chip interface friction and separation and damage fracture criterion were modeled. Based on the updated Lagrange and arbitrary Lagrangian-Eulerian (ALE) method, the temperature field in high speed orthogonal cutting of carbon steel AISI-1045 were simulated. The simulated results showed good agreement with the experimental results, which validated the precision of the process simulation method. Meanwhile, the influence of the process variables such as cutting speed, cutting depth, etc. on the temperature distribution was investigated.


1998 ◽  
Vol 120 (1) ◽  
pp. 13-20 ◽  
Author(s):  
R. Stevenson ◽  
D. A. Stephenson

It has been proposed several times in the metal-cutting literature that the machining process is non-unique and that the instantaneous machining conditions depend on the prior machining conditions (e.g. depth of cut, rake angle etc.). To evaluate the validity of this concept, a series of experiments was conducted using a highly accurate CNC machining center. For these experiments, the machining conditions were changed during the course of an orthogonal cutting experiment in a repeatable manner and the measured forces compared as a function of prior history. Tests were conducted on several tempers of 1100 aluminum and commercial purity zinc to evaluate the effect of material properties on the machining response. It was found that the change in measured cutting forces which could be ascribed to prior machining history was less than 3 percent and that material properties, particularly work hardening response, had no discernible effect on the magnitude of the difference.


1963 ◽  
Vol 85 (1) ◽  
pp. 49-64 ◽  
Author(s):  
W. N. Findley ◽  
R. M. Reed

A study is presented of the effect of wide variations in speed of cutting and rake angle on orthogonal cutting of several metals—mainly a lead-antimony alloy. It was observed that enormous decreases in tool forces occurred in the lead-antimony with increase in speed from 6 to 3800 fpm, and decrease in rake angle from +30° to −60°. Explanations for these variations are proposed. An unusual observation was that a transition as speed increased from continuous to discontinuous chips occurred at large negative rake angles. Possible causes of this behavior are discussed. Another unusual observation was that a steep rise in tool force occurred with increase in speed for rake angles of 0° and +30°. The rise to a peak value was followed by an equally steep decrease in tool forces. Other observations discussed include the appearance of side spikes on the chips, chip curl, lateral extrusion of chips, influence of normal stress occurring on the shear plane, and the apparent coefficient of friction.


1990 ◽  
Vol 112 (2) ◽  
pp. 184-189 ◽  
Author(s):  
D. V. Hutton ◽  
Qinghuan Yu

Experimental evidence is presented which indicates that the presence of a built-up edge can significantly affect the generation of acoustic emission in metal cutting. Results for machining SAE 1018 and 4140 steels show that the built-up edge can mask the generally accepted AE-cutting speed relation when cutting tools having small rake angles are used. Under cutting conditions conducive to development of a built-up edge, it is shown that increased acoustic emission is generated as a result of increased effective rake angle and corresponding increase of shear angle in the primary deformation zone. Three distinct types of built-up edge have been observed and classified as immature, periodic, or developed, according to effect on acoustic emission.


Author(s):  
Y Patel ◽  
B R K Blackman ◽  
J G Williams

An analysis of the forces involved in orthogonal cutting or machining is presented in which yielding on a shear plane is assumed. The fracture toughness Gc is included and it is observed that Gc may be determined by measuring the cutting and transverse forces together with the chip thickness for a range of cutting depths. This latter measurement enabled the shear plane angle ϕ to be determined experimentally. A simplified version of the analysis is also given in which ϕ is predicted by a cutting force minimization scheme. Neither scheme requires any details of the friction condition to be known since the transverse force is sufficient information for any type to be included in the analysis. A friction model including a coefficient of friction and an adhesion toughness is also utilized. Data for both polymer and metal cutting are taken from the literature and Gc is determined. In some datasets the tool rake angle α is also varied and the values of Gc and the yield stress σY are found to be independent of α. The force minimization method gives a good estimate of ϕ for most polymers. For metals (aluminium alloy, steel, and brass) the method worked well. For aluminium alloy Gc was independent of α and the predicted and measured ϕ values agreed. For steel and brass this was not so. Gc was mostly independent of α except at low values where high values of Gc were observed. A constant value of the coefficient of friction was observed for each α value but values for both the coefficient of friction and the adhesion toughness varied significantly with increasing rake angle.


2001 ◽  
Author(s):  
Alan T. Zehnder ◽  
Yogesh K. Potdar ◽  
Xiaomin Deng ◽  
Chandrakant Shet

Abstract Metal cutting is a thermo-mechanically coupled process in which plasticity induced heating and friction play a critical role. In this paper, we outline a methodology that combines high resolution experiments with numerical simulations. The simulations were performed with a general purpose finite element code. With this code we evaluate the effects of chip-tool interface friction and rake angle on temperature and cutting force and show that results for residual stresses in the workpiece are consistent with experimental data. We hypothesize that by closely coupling simulations to fine scale spatial and temporal experimental measurements of temperature and strain fields, questions related to choice of parameters in FE simulations can be resolved. We have designed and conducted orthogonal cutting experiments to measure temperatures, using IR detectors, with a spatial resolution of 27 × 27 μm and time scale of 200 ns. Experimentally obtained temperature fields are compared with FE results. We also obtain deformation fields with a spatial resolution of 50 × 50 μm.


2011 ◽  
Vol 305 ◽  
pp. 198-201
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

Orthogonal cutting experiments of Fe-36Ni invar alloy are performed. The change of chip morphology with cutting conditions are investigated through metallurgical observation, and the critical cutting speed of adiabatic shear for Fe-36Ni invar alloy at different cutting depths and rake angles are given. In addition, the characteristic of chip deformation before the occurrence of adiabatic shear is also analyzed. The results show that the critical cutting speed decreases with the increase of cutting depth and hardness, but increases with the increase of rake angle. The deformation coefficient tends to a constant value with the increase of cutting speed.


2017 ◽  
Vol 260 ◽  
pp. 219-226 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Eriks Gerins ◽  
Janis Rudzitis ◽  
Artis Kromanis

From the invention of turning machine or lathe, some engineers are trying to increase the turning productivity. The increase of productivity is following after the breakout in instrumental area, such as the hard alloy instrument and resistance to wear cutting surfaces. The potential of cutting speed has a certain limit. New steel marks and cutting surfaces types allow significantly increase cutting and turning speeds. For the most operation types the productivity increase begins from the feeding increase. But the increase of feeding goes together with machined surface result decreasement. Metal cutting with high feeding is one of the most actual problems in the increasing of manufacturing volume but there are some problems one of them is the cutting forces increasement and larger metal removal rate, which decrease the cutting tool life significantly. Increasing of manufacturing volume, going together with the cutting instrument technology and material evolution, such as the invention of the carbide cutting materials and wear resistant coatings such as TiC and Ti(C,N). Each of these coating have its own properties and functions in the metal cutting process. Together with this evolution the cutting tool geometry and machining parameters dependencies are researched. Traditionally for the decreasing the machining time of one part, the cutting parameters were increased, decreasing by this way the machining operation quantity. In our days the wear resistance of the cutting tools increasing and it is mostly used one or two machining operations (medium and fine finishing). The purpose of the topic is to represent the experimental results of the stainless steel turning process, using increased cutting speeds and feeding values, to develop advanced processing technology, using new modern coated cutting tools by CVD and PVD methods. After investigation of the machined surface roughness results, develop the mathematical model of the cutting process using higher values of the cutting parameters.


2013 ◽  
Vol 589-590 ◽  
pp. 38-44
Author(s):  
Gang Liu ◽  
Ming Chen ◽  
Peng Nan Li ◽  
Qing Zhen Bi ◽  
Bao Cai Guo

The concept of multi-constrained analysis of the cutting process is presented for the first time in the paper. The paper adopts a method to solve an important problem which is how to judge the influence of constrains during the cutting process. The research results are applied for HSS drills for cutting stainless steel. On the basis of the multi-constrained analysis combined with methods of simulations and standard experiments, the optimum methods are provided for structure, coating and cutting parameters of cutting tools. For geometric structure of tools, optimization is to increase thickness of cutting and rake angle. Coating optimization strategy is choosing high temperature hardness and low thermal conductivity coating. Optimization of cutting parameter is to adjust feed fate, then select proper cutting speed. The conclusion of paper is helpful for the cutting optimization.


Sign in / Sign up

Export Citation Format

Share Document