scholarly journals Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)

2014 ◽  
Vol 84 (12) ◽  
pp. 1307-1314 ◽  
Author(s):  
Nicolas Lammens ◽  
Mathias Kersemans ◽  
Geert Luyckx ◽  
Wim Van Paepegem ◽  
Joris Degrieck
2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Austin Bebee ◽  
Christopher J. Stubbs ◽  
Daniel J. Robertson

Abstract Numerous natural and synthetic systems can be modeled as clusters of interacting cantilever beams. However, a closed-form mathematical model capable of representing the mechanics of multiple interacting cantilever beams undergoing large deflections has yet to be presented. In this work, a pioneering mathematical model of the force–deflection response of multiple, inline, interacting (i.e., contacting) cantilever beams is presented. The math model enables the determination of the force–deflection response of a system of interacting cantilever beams and is predicated upon the “Pseudo Rigid Body Model” concept. The model was validated through data triangulation experiments which included both physical and computational studies. An analysis of the mathematical model indicates it is most accurate with deflections less than 50 deg. In the future, the model may be used in high throughput phenotyping applications for investigating stalk lodging and estimating the flexural rigidity of crop stems. The model can also be used to gain intuition and aid in the design of synthetic systems composed of multiple cantilever beams.


2013 ◽  
Vol 13 (11) ◽  
pp. 2863-2870 ◽  
Author(s):  
I. V. Fine ◽  
R. E. Thomson

Abstract. We present a highly accurate and computationally efficient method (herein, the "wavefront orientation method") for determining the travel time of oceanic tsunamis. Based on Huygens' Principle, the method uses an eight-point grid-point pattern and the most recent information on the orientation of the advancing wavefront to determine the time for a tsunami to travel to a specific oceanic location. The method is shown to provide improved accuracy and reduced anisotropy compared with the conventional multiple grid-point method presently in widespread use.


2018 ◽  
Vol 938 ◽  
pp. 46-53 ◽  
Author(s):  
Sergey I. Koryagin ◽  
O.V. Sharkov ◽  
Nikolay L. Velikanov

Polymer coatings are widely used for effective vibration damping of sheet or hull structures of different engineering systems. The article presents a calculation and experimental technique that enables improved accuracy and validity of damping properties determination of polymer coatings. Mathematical models to determine the parameters of the experimental specimen having a homogenous strain state of the polymer coating are obtained. Experimentally confirmed that the use of coatings based on adhesive compositions such as "Sprut" increases by 18...28 times the damping capability in metal structures. An addition of fillers in adhesive compositions "Sprut" type in a proportion of 30...50% of its weight reduces by 2.4 times the damping properties of metal structures.


1966 ◽  
Vol 88 (1) ◽  
pp. 31-36
Author(s):  
Paul E. Wilson ◽  
Edward E. Spier

This paper presents an analysis of the postbuckling behavior of an initially straight plate strip of variable flexural rigidity whose ends are subjected to opposing “axial” loads. Bending action takes place only in the center section of the strip, since the symmetric end portions are considered to be rigid. Pertinent postbuckling load-deflection curves are deduced by using the nonlinear bending theory of a plate strip, and the maximum stress is obtained as a function of the half-distance between the loaded ends. Numerical results are presented in nondimensional form, and the theoretical solution is shown to compare favorably with a major portion of the experimental stress and deflection data. Information given here has an important and direct application to the determination of bending stress states in the lateral faces of a wide class of tensile test coupons used in stress corrosion studies.


2003 ◽  
Vol 30 (5) ◽  
pp. 795-806 ◽  
Author(s):  
Yi Liu ◽  
J L Dawe

An analytical technique was developed and encoded for computer application to study the behaviour of concrete masonry load-bearing walls under various loading conditions. Both geometrical and material nonlinearities to account for the moment magnification effect and the degradation of material stiffness are included in the development. Effects of vertical reinforcing steel, masonry tensile cracking, and compressive crushing are included directly in the moment–curvature relationship, which is used in the determination of element stiffnesses at successive load increments. A parametric study was conducted following verification of the analytical model by comparing results with experimental test data. Effective flexural rigidity (EIeff) values at failure were obtained analytically and compared with values suggested in the Canadian masonry code CSA-S304.1-M94. It was concluded that CSA-S304.1-M94 tends to underestimate EIeff values for reinforced walls and thus leads to a conservative design over a range of parameters. Based on approximately 500 computer model tests, a lower bound bilinear limit for the effective rigidity of reinforced masonry walls was established. This limit is believed to provide an accurate and realistic estimate of EIeff.Key words: walls, load bearing, masonry, analytical, nonlinear, rigidity, stress–strain, moment–curvature.


2019 ◽  
Vol 2019 (9) ◽  
Author(s):  
R Kitahara ◽  
K Hirota ◽  
S Ieki ◽  
T Ino ◽  
Y Iwashita ◽  
...  

Abstract In a neutron lifetime measurement at the Japan Proton Accelerator Complex, the neutron lifetime is calculated from the neutron decay rate and the incident neutron flux. The flux is obtained by counting the protons emitted from the neutron absorption reaction of ${}^{3}{\rm He}$ gas, which is diluted in a mixture of working gas in a detector. Hence, it is crucial to determine the amount of ${}^{3}{\rm He}$ in the mixture. In order to improve the accuracy of the number density of the ${}^{3}{\rm He}$ nuclei, we have suggested using the ${}^{14}{\rm N}({\rm n},{\rm p}){}^{14}{\rm C}$ reaction as a reference because this reaction involves similar kinetic energy to the $^3$He(n,p)$^3$H reaction and a smaller reaction cross section to introduce reasonable large partial pressure. The uncertainty of the recommended value of the cross section, however, is not satisfied with our requirement. In this paper we report the most accurate experimental value of the cross section of the $^{14}$N(n,p)$^{14}$C reaction at a neutron velocity of 2200 m s$^{-1}$, measured relative to the $^3$He(n,p)$^3$H reaction. The result was 1.868 $\pm$ 0.003 (stat.) $\pm$ 0.006 (sys.) b. Additionally, the cross section of the $^{17}$O(n,$\alpha$)$^{14}$C reaction at the neutron velocity is also redetermined as 249 $\pm$ 6 mb.


1996 ◽  
Vol 68 (18) ◽  
pp. 3274-3276 ◽  
Author(s):  
Shirley M. Hoenigman ◽  
Christine E. Evans

Sign in / Sign up

Export Citation Format

Share Document