Multi-scale density detection for yarn-dyed fabrics with deformed repeat patterns

2016 ◽  
Vol 87 (20) ◽  
pp. 2524-2540 ◽  
Author(s):  
Dejun Zheng ◽  
Lingheng Wang

A new method combining the characteristics of macro-scale texture repeat patterns and micro-scale interwoven yarns of fabric images was proposed for yarn-dyed fabric density detection. The method was formulated in a research framework of multi-scale image processing and analysis. Firstly, a structure–texture decomposition approach was used to extract texture information and woven pattern details from the macro-scale fabric image. Secondly, a texture unit detection model was proposed to extract the texture units and to detect the yarn skewness in these texture units. Thirdly, a simple yet effective image registration method and a lightness gradient projection method were adopted to analyze the micro-scale fabric image and obtain the yarn locations in a texture unit. Finally, the average fabric density was calculated by coupling the near-regular features of texture units and yarn locations. The experiments showed that the proposed method was effective in detecting hundreds of yarns in the fabric samples and the computation time was very reasonable.

Author(s):  
Huachao Mao ◽  
Yuen-Shan Leung ◽  
Yuanrui Li ◽  
Pan Hu ◽  
Wei Wu ◽  
...  

Current Stereolithography (SL) can fabricate three-dimensional (3D) objects in a single scale level, e.g. printing macro-scale or micro-scale objects. However, it is difficult for the SL printers to fabricate a 3D macro-scale object with micro-scale features. In the paper a novel SL-based multi-scale fabrication method is presented to address such a problem. The developed SL process can fabricate multi-scale features by dynamically changing the shape and size of a laser beam. Different shaped beams are realized by switching apertures with different micro-patterns. The laser beam without using any micro-patterns is used to fabricate the macro-scale features, while the shaped laser beams with smaller sizes are used to fabricate micro-patterned features. Accordingly, the tool path planning method for the multi-scale fabrication process are developed so that macro-scale and micro-scale features can be built by using different layer thicknesses, laser exposure time, and scanning paths. Compared with the conventional SL process based on a fixed laser beam size, our process can fabricate multi-scale features in a 3D object. It also has fast fabrication speed and good surface quality.


Author(s):  
M. K. Thompson

Many traditional macro scale finite element models of thermal contact systems have incorporated the effect of micro scale surface topography by applying a constant value of thermal contact conductance (TCC) per unit area to the regions in contact. However, it has been very difficult to determine an appropriate TCC value for a given system and analysts typically had to rely on experimental data or values from the literature. This work presents a method for predicting micro scale TCC per unit area by incorporating micro scale surface roughness in a multi-scale iterative thermal/structural finite element contact model. The resulting TCC value is then used in a macro scale thermal/structural contact model with apparent surface form to predict the thermal contact resistance and overall thermal resistance for a commercial power electronics module.


Author(s):  
Rafael Cámara Artigas ◽  
Fernando Díaz del Olmo ◽  
Jose Ramon Martinez Batlle

An analytical and cartographic method of biomass distribution and plant formations at a multi-scalar level is developed based on bioclimatic variables extracted from the Thornthwaite Water Balance (WB) and the Bioclimatic Balances (BB) of Montero de Burgos & González Rebollar. As a result, a distribution map involving Types of Bioclimatic Regimens (TBR) is obtained leading to the identification of a multi-scale classification at different levels: zonal (macro-scale) with 5 types, regional (meso-scale) with 27 types, and local (micro-scale) with 162 plant formations subtypes, conditioned by lithology-soils, the relief exposure to wind or sunstroke respectively and obtained through the combination of TBR and ombroclimates.


Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 106 ◽  
Author(s):  
Konstantinos Tserpes ◽  
Christos Kora

This is the second of a two-paper series describing a multi-scale modeling approach developed to simulate crack sensing in polymer fibrous composites by exploiting interruption of electrically conductive carbon nanotube (CNT) networks. The approach is based on the finite element (FE) method. Numerical models at three different scales, namely the micro-scale, the meso-scale and the macro-scale, have been developed using the ANSYS APDL environment. In the present paper, the meso- and macro-scale analyses are described. In the meso-scale, a two-dimensional model of the CNT/polymer matrix reinforced by carbon fibers is used to develop a crack sensing methodology from a parametric study which relates the crack position and length with the reduction of current flow. In the meso-model, the effective electrical conductivity of the CNT/polymer computed from the micro-scale is used as input. In the macro-scale, the final implementation of the crack sensing methodology is performed on a CNT/polymer/carbon fiber composite volume using as input the electrical response of the cracked CNT/polymer derived at the micro-scale and the crack sensing methodology. Analyses have been performed for cracks of two different lengths. In both cases, the numerical model predicts with good accuracy both the length and position of the crack. These results highlight the prospect of conductive CNT networks to be used as a localized structural health monitoring technique.


Author(s):  
Xiao-Hong Yin ◽  
Jin-Wen Jian ◽  
Can Yang ◽  
Tian Lei ◽  
Tao Cheng

Abstract In the present work, the poly (vinylidene fluoride) composite filled with the lead zirconium titanate (PVDF/PZT) was numerically investigated focusing on the improvement of piezoelectric performance parameters. With a multi-scale simulation strategy, effects of the PZT fillers’ orientation and length on the electrical outputs of the piezoelectric energy collectors buried in the roads were systematically examined. Specifically, at the micro-scale, based on our previous research results, Comsol Multiphysics connected with Matlab was utilized to create the unit cell of piezoelectric composites. The simulation results showed that parameters of PZT nano-fillers greatly affect the piezoelectric coefficients. For the macro-scale simulation, a road energy collector with innovative symmetrical cantilever structure was designed, with piezoelectric constants obtained at micro-scale simulation as inputs. The correlation between the output voltage of the energy-collector and PZT parameters (i.e., orientation and length) was successfully developed by applying the vehicle’s axle-load. This work provides a way for tailoring the piezoelectric performance of the macro components (i.e., sensors) through adjusting the states of the fillers inside the piezoelectric composites.


Author(s):  
Konstantinos Tserpes ◽  
Christos Kora

This is the second of a two-paper series describing a multi-scale modeling approach developed to simulate crack sensing in polymer fibrous composites by exploiting interruption of electrically conductive carbon nanotube (CNT) networks. The approach is based on the finite element (FE) method. FE models at three different scales, namely the micro-scale, the meso-scale and the macro-scale, have been developed using the ANSYS PDL environment. In the present paper, the meso- and macro-scale analyses are described. In the meso-scale, a two-dimensional model of the CNT/polymer matrix reinforced by carbon fibers is used to develop a crack sensing methodology from a parametric study which relates the crack position and length with the reduction of current flow. In the meso-model, the effective electrical conductivity of the CNT/polymer computed from the micro-scale is used as input. In the macro-scale, the final implementation of the crack sensing methodology is performed on a CNT/polymer/carbon fiber composite volume using as input the electrical response of the cracked CNT/polymer derived at the micro-scale and the crack sensing methodology. Analyses have been performed for cracks of two different lengths. In both cases, the numerical model predicts with good accuracy both the length and position of the crack. These results highlight the prospect of conductive CNT networks to be used as a localized structural health monitoring technique.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Naoki Takeishi ◽  
Taiki Shigematsu ◽  
Ryogo Enosaki ◽  
Shunichi Ishida ◽  
Satoshi Ii ◽  
...  

Thrombi form a micro-scale fibrin network consisting of an interlinked structure of nanoscale protofibrils, resulting in haemostasis. It is theorized that the mechanical effect of the fibrin clot is caused by the polymeric protofibrils between crosslinks, or to their dynamics on a nanoscale order. Despite a number of studies, however, it is still unknown, how the nanoscale protofibril dynamics affect the formation of the macro-scale fibrin clot and thus its mechanical properties. A mesoscopic framework would be useful to tackle this multi-scale problem, but it has not yet been established. We thus propose a minimal mesoscopic model for protofibrils based on Brownian dynamics, and performed numerical simulations of protofibril aggregation. We also performed stretch tests of polymeric protofibrils to quantify the elasticity of fibrin clots. Our model results successfully captured the conformational properties of aggregated protofibrils, e.g., strain-hardening response. Furthermore, the results suggest that the bending stiffness of individual protofibrils increases to resist extension.


Author(s):  
Zaoyang Zhou ◽  
Xueping Zhang ◽  
Zhenqiang Yao ◽  
Lifeng Xi

The deviations of cylinder bore dimensional accuracy have tremendous influence on engine performances including friction power loss, vibration, leak tightness between piston ring and cylinder wall, and abrasive resistance. Many researches were devoted to capturing cylinder dimensional accuracies by honing using analytical, experimental and simulation methods. These researches investigated the topography and roughness of the honed surface, the relationship between the process parameters and the dimensional accuracies. However, most researches focused on macro-scale dimensional accuracy and micro-scale surface texture respectively. To overcome the limitation, a multi-scale model for cylinder bore honing is proposed to predict the dimensional accuracy and surface texture of cylinder bore at macro-scale and micro-scale simultaneously. The model integrates the microscale factors of the honing stone abrasives distribution characteristics, abrasive wear process, previous cylinder surface topography, and macro-scale factors of cylinder geometry and honing head motion trajectory. A Force matching method is adopted to determine the feed depth of cylinder honing process. Thus the model can predict the roundness, cylindricity, roughness and Abbott-Firestone curve of the honed cylinder bore at multi-scale levels. Simulation results show that material removal distribution is closely related to cylinder bore initial shape deviations. The deviations with long wavelengths cannot be eliminated by the sequential honing.


2021 ◽  
Vol 4 (6) ◽  
pp. 1-22
Author(s):  
Francesca Tedeschi ◽  
◽  
Giulio G. Giusteri ◽  
Leonid Yelash ◽  
Mária Lukáčová-Medvid'ová ◽  
...  

<abstract><p>We introduce a new heterogeneous multi-scale method for the simulation of flows of non-Newtonian fluids in general geometries and present its application to paradigmatic two-dimensional flows of polymeric fluids. Our method combines micro-scale data from non-equilibrium molecular dynamics (NEMD) with macro-scale continuum equations to achieve a data-driven prediction of complex flows. At the continuum level, the method is model-free, since the Cauchy stress tensor is determined locally in space and time from NEMD data. The modelling effort is thus limited to the identification of suitable interaction potentials at the micro-scale. Compared to previous proposals, our approach takes into account the fact that the material response can depend strongly on the local flow type and we show that this is a necessary feature to correctly capture the macroscopic dynamics. In particular, we highlight the importance of extensional rheology in simulating generic flows of polymeric fluids.</p></abstract>


Author(s):  
Feng Li ◽  
Gulnigar Ablat ◽  
Siqi Zhou ◽  
Yixin Liu ◽  
Yufeng Bi ◽  
...  

AbstractIn ice and snow weather, the surface texture characteristics of asphalt pavement change, which will significantly affect the skid resistance performance of asphalt pavement. In this study, five asphalt mixture types of AC-5, AC-13, AC-16, SMA-13, SMA-16 were prepared under three conditions of the original state, ice and snow. In this paper, a 2D-wavelet transform approach is proposed to characterize the micro and macro texture of pavement. The Normalized Energy (NE) is proposed to describe the pavement texture quantitatively. Compared with the mean texture depth (MTD), NE has the advantages of full coverage, full automation and wide analytical scale. The results show that snow increases the micro-scale texture because of its fluffiness, while the formation of the ice sheets on the surface reduces the micro-scale texture. The filling effect of snow and ice reduces the macro-scale texture of the pavement surface. In a follow-up study, the 2D-wavelet transform approach can be applied to improve the intelligent driving braking system, which can provide pavement texture information for the safe braking strategy of driverless vehicles.


Sign in / Sign up

Export Citation Format

Share Document