scholarly journals X-ray shielding by a novel garment woven with melt-spun monofilament weft yarn containing lead and tin particles

2017 ◽  
Vol 89 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Majid Mirzaei ◽  
Mohammad Zarrebini ◽  
Ahmad Shirani ◽  
Mohsen Shanbeh ◽  
Sedigheh Borhani

Conventional lead aprons are rather heavy and uncomfortable for the wearer and also crack easily due to bending during both usage and storage. Coating of textiles with certain compounds provides protection against ionizing radiation. However, coated garments may have reduced flexibility and breathability. The principle aim of this study is development of a lightweight textile-based X-ray radiation shielding. The shielding fabric, while capable of significantly attenuating X-rays, relative to current conventional aprons is more intrinsically flexible, breathable, economical, easy to maintain, and crack resistant. Samples of fabrics were woven using melt-spun polypropylene monofilament yarns containing lead and tin particles. Shielding properties of the samples was measured using a high-purity germanium detector. Results showed that the samples composed of higher metal particles concentration and higher metal density and atomic number exhibited higher attenuation capability. Mechanical properties of the samples were evaluated. Furthermore, insignificant changes in the attenuation capability of samples due to abrasion and laundering processes occurred.

1998 ◽  
Vol 6 (6) ◽  
pp. 8-12
Author(s):  
Rob Sareen

Detection of characteristic x-rays is a fascinating and challenging subject. From its early beginnings with gas proportional counters it has evolved, like many branches of technology, into the use of a variety of semiconductors.The lithium compensated silicon detector [Si(Li)] has been the predominant measuring tool over the last two decades, in the last five years, increasing numbers of high purity germanium detectors (HPG) have appeared and more recently a plethora of new materials and concepts are seeing a successful introduction. Among these newer materials are compound semiconductors like mercuric iodide, cadmium telluride, cadmium zinc telluride, gallium arsenide, lead iodide, indium phosphide and diamond. Among the new concepts are Bolometers, Transition Edge Detectors, Drift Detectors, PIN Diodes, CCD arrays and PN CCD arrays.


2018 ◽  
Vol 69 (01) ◽  
pp. 44-49
Author(s):  
ÖZDEMIR HAKAN ◽  
CAMGÖZ BERKAY

Lead aprons that are lead-shielding products are generally used for personal protection of physicians and patients from X-ray (gamma) radiation during medical operations; lead has environmental disadvantages, with high toxicity, though. Therefore, the aim of this research was to produce an environmentally friendly and flexible textile-based radiation shielding material. In this work, 2/2 twill, 3/1 twill, Herringbone, Whipcord, which are twill derivatives, Barathea and Crêpe woven fabrics, which are sateen derivatives, woven with textured steel yarns, which have soft feeling and flexibility, and gamma radiation shielding effectiveness of these fabrics were investigated and were not studied in the references. The effects of fabric structural characteristics such as weave, conductive weft yarn density, fabric thickness and porosity on these properties were analysed graphically and statistically. It is observed that with the biggest thicknesses and lowest porosities, Barathea and Crêpe woven fabrics performed better gamma radiation shielding performance than other woven fabrics. The samples F1 and E1, woven with Barathea and Crêpe weave, have the highest gamma radiation shielding effectiveness, thanks to the highest fabric thicknesses and lowest porosities. In addition, the increases of textured steel yarn density improved the gamma radiation shielding effectiveness of woven fabrics.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3081
Author(s):  
Saad Alshahri ◽  
Mohammed Alsuhybani ◽  
Eid Alosime ◽  
Mansour Almurayshid ◽  
Alhanouf Alrwais ◽  
...  

Recently developed polymer-based composites could prove useful in many applications such as in radiation shielding. In this work, the potential of a bismuth oxide (Bi2O3) nanofiller based on an LDPE polymer was developed as lead-free X-ray radiation shielding offering the benefits of lightness, low-cost and non-toxic compared to pure lead. Three different LDPE-based composites were prepared with varying weight percentages of Bi2O3: 5%, 10% and 15%. The characterizations were extended to include structural properties, physical features, mechanical and thermal properties, and radiation shielding efficiency for the prepared nanocomposites. The results revealed that the incorporation of the Bi2O3 nanofiller into an LDPE improved the density of the composites. There was also a slight increase in the tensile strength and tensile modulus. In addition, there was a clear improvement in the efficiency of the shield when fillers were added to the LDPE polymer. The LDPE + Bi2O3 (15%) composite needed the lowest thickness to attenuate 50% of the incident X-rays. The LDPE + Bi2O3 (15%) polymer can also block around 80% of X-rays at 47.9 keV. In real practice, a thicker shield of the proposed composite materials, or a higher percentage of the filler could be employed to safely ensure the radiation is blocked.


2019 ◽  
Vol 345 ◽  
pp. 15-25 ◽  
Author(s):  
Majid Mirzaei ◽  
Mohammad Zarrebini ◽  
Ahmad Shirani ◽  
Mohsen Shanbeh ◽  
Sedigheh Borhani

1961 ◽  
Vol 5 ◽  
pp. 169-190 ◽  
Author(s):  
William J. Campbell ◽  
Stephan Stecura ◽  
Clark Grain

AbstractThis paper summarizes developments in the field of high-temperature X-ray diffractometers through 1959, evaluates various furnace designs, and describes briefly the X-ray diffraction facilities of the Federal Bureau of Mines.X-ray optics, for those furnaces that have precision sample movements, are equivalent in resolution and line profile to conventional X-ray techniques. There is a 10-25% loss of intensity due to absorption of X-rays in the furnace windows, magnitude of which depends on wavelength and type of window used, and a reduction (5–40° 2θ) of useful angular range from limiting X-ray windows, radiation shielding, or the viewport for an optical pyrometer. In oxidizing atmospheres, temperatures up to 1500°C were obtained with furnaces wound with platinum—20% rhodium wire. Under nonoxidizing conditions temperatures of 1800 to 2000°C were obtained with both tantalum-foil and tungsten-wire heaters.Accurate temperature measurement over the area and depth of samples being studied is the most difficult problem in high-temperature X-ray diffractometry. Below 500°C, there are several furnace designs which are reported to reduce thermal differentials to less than 1°C across the sample. However, at temperatures around 1000°C, there are thermal gradients of 20-30°C/cm across the sample and 100–600°C/cm through the sample holder, making thermocouple location critical. Secondary standards have been used extensively to calibrate the furnaces; however, there is disagreement concerning which are the most reliable data to use. For these reasons, plus others discussed in this report, there is a probable error in the temperature determination of ±10 to 20°C at 1000°C, with the error increasing with temperature.


1970 ◽  
Vol 14 ◽  
pp. 127-138 ◽  
Author(s):  
J. R. Rhodes ◽  
C. B. Hunter ◽  
D. L. Kellogg ◽  
R. D. Sieberg ◽  
T. Furuta

AbstractA compact X-ray energy spectrometer has been developed consisting essentially of a radioisotope X-ray source, a lithium-drifted silicon (or germanium) detector and a small computer. Interchangeable sources enable efficient excitation of K X-rays from Na to U and L X-rays from about Ag to U. Energy resolution of K X-rays from adjacent elements down to Na is possible. Depending on the source and the part of the spectrum examined, the characteristic X-rays from up to about 15 elements can be simultaneously excited and measured, for either qualitative or quantitative multi-element analysis. The computer stores detected spectra and performs simple data processing such as peak recognition, background subtraction, peak integration, ratioing and solution of linear equations.The analysis reported in this paper is the determination of V, Cr, Fe, Co, W and Mo in tool steels and is intended to illustrate the capabilities of the radioisotope X-ray fluorescence analysis technique, and the instrument, for multi-element analysis of a system having fairly complex interelement effects.A 100 mCi Pu-238 source was used to excite the K X-rays of V, Cr, Fe, Co and Mb and the L X-rays of W. The count time used was five minutes per sample. Data reduction consisted essentially of peak integration, background subtraction and solution of sixth order linear matrices of a modified Criss-Birks type. The 36 matrix coefficients were determined using six standards, and were then used to analyze seven other analyzed specimens which were treated as unknowns. The measured values of concentration were in very good agreement with the quoted values. An iteration technique was employed to reduce errors in the matrix inversioiis.


2009 ◽  
Vol 19 (01n02) ◽  
pp. 67-76
Author(s):  
SANJIV KUMAR ◽  
G. L. N. REDDY ◽  
V. S. RAJU

This paper deals with studies on Ge K α and K β escape peaks in particle induced X-ray emission (PIXE) spectra recorded by a high purity germanium (HPGe) detector. A knowledge of the energies and intensities of these escape peaks is desirable for accurate qualitative as well as quantitative analysis of elements by PIXE. The spectral interferences caused by Ge K escape peaks in the determination of Fe in U by PIXE are highlighted for illustration. A simple theoretical approach based on the production of Ge K X-rays inside the Ge crystal of the detector during the process of detection of the incident characteristic X-rays and the subsequent escape of a fraction of the produced radiations from the crystal, is described to calculate the intensity ratio of the Ge escape peak to its parent characteristic X-rays. The calculated values are in agreement with the experimental values and those estimated using the formulation provided in GUPIX software for PIXE. The Ge K escape peaks are very prominent; the intensities of Ge K α escape peaks, from bromine to silver, range from 15% to 6% of those of their respective K α X-rays. These intensities are, in general, considerably higher compared to those of Si escape peaks in spectra recorded by Si ( Li ) detector. Ge K escape peaks therefore may give rise to severe interferences. The present approach provides a precise (~8%) determination of the intensity of an escape peak and thereby facilitates a reliable PIXE analysis.


Sign in / Sign up

Export Citation Format

Share Document