A highly stretchable, easily processed and robust metal wire-containing woven fabric with strain-enhanced electromagnetic shielding effectiveness

2021 ◽  
pp. 004051752199489 ◽  
Author(s):  
Yong Wang ◽  
Stuart Gordon ◽  
Weidong Yu ◽  
Zongqian Wang

Textiles that contain integrated conducting components are drawing attention for their ability to mitigate electromagnetic radiation pollution. Maintaining effective and robust electromagnetic shielding effectiveness (EMSE) under different modes, e.g. stretching, bending and washing, is of importance in protecting humans and information-sensitive electronic devices from exposure to electromagnetic interference. In this work, a weft-stretchable, conductive fabric (W-SCF) was specially manufactured for electromagnetic shielding characterization by integrating stainless steel filament (SSF) in the weft direction. The results demonstrate that our as-prepared W-SCF was effective for shielding purpose with its EMSE dependent on the orientation of the SSF within the fabric structure. Specular reflection caused by the close arrangement of the SSF and the lower electrical resistance of the fabric on per unit area basis were responsible for the enhanced shielding properties when the fabric was stretched. Furthermore, using the fabric in a 90°/90° laminated form improved the EMSE values compared with a single layer and a 0°/90° laminated versions. Importantly, the W-SCF exhibited resistance to 10 laundering cycles, 20 stretching cycles (at 25% extension), 50 bending cycles and 100 abrasion cycles, demonstrating its robustness and durability. This work is believed to take a new step in development of reliable and advance shielding materials for special protective application.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4176
Author(s):  
Shi Hu ◽  
Dan Wang ◽  
Aravin Prince Periyasamy ◽  
Dana Kremenakova ◽  
Jiri Militky ◽  
...  

A textile material’s electromagnetic interference (EMI) shielding effectiveness mainly depends on the material’s electrical conductivity and porosity. Enhancing the conductivity of the material surface can effectively improve the electromagnetic shielding effectiveness. However, the use of highly conductive materials increases production cost, and limits the enhancement of electromagnetic shielding effectiveness. This work aims to improve the EMI shielding effectiveness (EMSE) by using an ultrathin multilayer structure and the air-permeable textile MEFTEX. MEFTEX is a copper-coated non-woven ultrathin fabric. The single-layer MEFTEX SE test results show that the higher its mass per unit area (MEFTEX 30), the better its SE property between 56.14 dB and 62.53 dB in the frequency band 30 MHz–1.5 GHz. Through comparative testing of three groups samples, a higher electromagnetic shielding effect is obtained via multilayer structures due to the increase in thickness and decrease of volume electrical resistivity. Compared to a single layer, the EMI shielding effectiveness of five layers of MEFTEX increases by 44.27–83.8%. Due to its ultrathin and porous structure, and considering the balance from porosity and SE, MEFTEX 10 with three to four layers can still maintain air permeability from 2942 L/m2/s–3658 L/m2/s.


2016 ◽  
Vol 87 (8) ◽  
pp. 902-912 ◽  
Author(s):  
Hu Jiyong ◽  
Li Guohao ◽  
Shi Junhui ◽  
Yang Xudong ◽  
Ding Xin

To solve electromagnetic interference of electronic devices and health issues by the expansion of the electronic industry and the extensive use of electronic equipment, flexible and stretchable conductive elastic textiles are beneficial. This study prepared conductive Ni/polyaniline (PANi)/polytrimethylene-terephthalate (PTT) composite fabric by in situ chemical polymerization and electroless nickel plating. Their direct current electrical resistance and the shielding efficiency energy were tested. Furthermore, the effect of electroless plating conditions was investigated on surface resistivity and electromagnetic shielding effectiveness (EMSE) of the composite fabric, and the correlation between electrical resistivity and EMSE was explored. The results show that the shielding efficiency energy of Ni/PANi/PTT composite fabric optimized can reach more than 40 dB and at a given frequency it has an inverse parabolic relation with the electroless plating conditions. In addition, when the electroless plating conditions is the determinant, the SE has little change in the electromagnetic wave frequency, especially in the frequency range of 600 MHz or more. It is concluded that the EMSE of the Ni/PANi/PTT conductive fabrics could be tailored by modifying the chemical reagent contents in the electroless plating solution.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1657 ◽  
Author(s):  
Marek Neruda ◽  
Lukas Vojtech

In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25–50 dB at 0.03–1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.


2019 ◽  
Vol 14 ◽  
pp. 155892501986096 ◽  
Author(s):  
Ilkan Özkan ◽  
Abdurrahman Telli

In this study, stainless steel, copper, and silver wires were intermingled with two polyamide 6.6 filaments through the commingling technique to produce three-component hybrid yarns. The produced hybrid yarns were used as weft in the structure of plain woven fabric samples. The electromagnetic shielding effectiveness parameters of samples were measured in the frequency range of 0.8–5.2 GHz by the free space technique. The effects of metal hybrid yarn placement, number of fabric layers, metal types, and wave polarization on the electromagnetic shielding effectiveness and absorption and reflection properties of the woven fabrics were analyzed statistically at low and high frequencies separately. As a result, the samples have no shielding property in the warp direction. Metal types show no statistically significant effect on electromagnetic shielding effectiveness. However, fabrics containing stainless steel have a higher absorption power ratio than copper and silver samples. Double-layer samples have higher electromagnetic shielding effectiveness values than single-layer fabrics in both frequency ranges. However, the number of layers does not have a significant effect on the absorbed and reflected power in the range of 0.8–2.6 GHz. There was a significant difference above 2.6 GHz frequency for absorbed power ratio. An increase in the density of hybrid yarns in the fabric structure leads to an increase in the electromagnetic shielding effectiveness values. Two-metal placement has a higher absorbed power than the full and one-metal placements, respectively. The samples which have double layers and including metal wire were in their all wefts reached the maximum electromagnetic shielding effectiveness values for stainless steel (78.70 dB), copper (72.69 dB), and silver composite (57.50 dB) fabrics.


2015 ◽  
Vol 749 ◽  
pp. 265-269 ◽  
Author(s):  
Jia Horng Lin ◽  
Ting An Lin ◽  
Chien Teng Hsieh ◽  
Jan Yi Lin ◽  
Ching Wen Lou

This study uses 0.08mm copper wire and nickel-coated copper wire as the core and 75 D far infrared filament as the wrapped material to manufacture Cu/FIR-PET wrapped yarn, Ni-Cu/FIR-PET wrapped yarn and Ni-Cu/Cu/FIR-PET wrapped yarn. The three optimum metallic/FIR-PET wrapped yarns are then weaving into Cu/FIR-PET woven fabrics, Ni-Cu/FIR-PET woven fabrics and Ni-Cu/Cu/FIR-PET woven fabrics. Tensile property of metallic/FIR-PET wrapped yarns, electrical resistance of metallic/FIR-PET wrapped yarns, surface resistivity of metallic/FIR-PET woven fabrics and electromagnetic shielding effectiveness of metallic/FIR-PET woven fabric are discussed. According to the results, the optimum tenacity and elongation are chosen as 7 turns/ cm, electrical resistance of Ni-Cu/Cu/FIR-PET wrapped presents the best value, Cu/FIR-PET woven fabric has the lowest surface resistivity and Ni-Cu/Cu/FIR-PET woven fabric shows the best EMSE at 37.61 dB when the laminating-layer number is double layer and laminating at 90 ̊. In this study, three kinds of metallic/FIR-PET woven fabrics are successfully manufactured and looking forward to applying on industrial domains.


2014 ◽  
Vol 910 ◽  
pp. 210-213 ◽  
Author(s):  
Jia Horng Lin ◽  
Ting An Lin ◽  
An Pang Chen ◽  
Ching Wen Lou

The electronic appliance is capable of emitting electromagnetic waves that will cause the damage of electrical equipment and influence peoples health. In this study, stain steel filament (SS filament) and 75D PET filament were used to manufacture SS/PET composite yarn The SS/PET composite yarn were made by the wrapping machine, which the core yarn is stain steel filament, wrapped yarn is 75D PET filament and the wrapping layers is varied as one and two. After that, the composite yarn is fabricated by the automatic sampling loom into composite woven fabrics. The composite SS/PET woven fabrics were under the tests of electromagnetic shielding effectiveness (EMSE) and air permeability. The test results revealed that the EMSE of the one-layer composite woven fabric is 9.5 dB at 900 MHz, but the EMSE decreases as test frequency increases. When laminating layer added to three layers, the EMSE raise up to 12.6 dB. The EMSE of composite woven fabric reached at 29.9 when the laminated angle is 45°. And the air permeability decreases as the laminate layer increases, which the thickness of sample affect air to pass through the sample.


2011 ◽  
Vol 280 ◽  
pp. 159-164 ◽  
Author(s):  
Ke Yang Lu ◽  
Feng Fu ◽  
Yue Jin Fu ◽  
Zhi Yong Cai

Radiations from different electrical devices cause electromagnetic interference which will influence the performance realization of other electromagnetic device and cause the health concerns. The aluminum plates were then used to develop wood electromagnetic shielding composites by laminating with the plywood. Their static modulus of elasticity and electromagnetic shielding effectiveness of the composites with different thickness and position of aluminum plates were evaluated. The results showed that the strength of composites were improved by laminating the aluminum plates on the surface. The electromagnetic shielding performance of the composites were increased by the design of the multilayer and sandwich shielding structure. Again, It was also found that the composites made by laminating two aluminum plates (1mm, in the middle or on the surface) had a better shielding effectiveness (60 dB to 92 dB, 60 dB to 106 dB, Ranged from 1 GHz to 10 GHz) and met the requirement for a commercial electromagnetic shielding building product.


2011 ◽  
Vol 239-242 ◽  
pp. 1994-1997 ◽  
Author(s):  
Ching Wen Lou ◽  
Yi Chang Yang ◽  
Chin Mei Lin ◽  
Ching Wen Lin ◽  
Lin Chao Chen ◽  
...  

Stainless steel (SS) blended yarns with electromagnetic interference (EMI) were made into woven fabrics, after which the fabrics were evaluated with electromagnetic shielding effectiveness (EMSE). Parameters of laminated angle and the lamination number layers affected the fabrics’ EMSE differently. In addition, density of unidirectional SS yarns affected EMSE in frequency range of 200 to 500 MHz , so as the density of cross SS yarns on a frequency over 1000 MHz.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 740
Author(s):  
Yanfei Pan ◽  
Dingwen Yin ◽  
Xiaofang Yu ◽  
Nanyi Hao ◽  
Jintian Huang

The lightweight multilayer-structured electromagnetic interference shielding composite coatings with controllable electromagnetic gradient on wood surface were prepared via a simple multiple electroless copper–nickel (Cu–Ni) approach. The surface morphology, conductivity, hydrophobicity property and electromagnetic shielding effectiveness of the composite coatings were investigated. The surface roughness and conductivity of the composite coatings were enhanced with the increase in the number of depositions. The surface morphology demonstrated that the roughness was decreased with the process of multiple electroless. The coatings were compact and homogeneous as the deposition run was three. Here, the Sa (Sa illustrated Surface Roughness) value of coatings was 4.497 μm. The ideal conductivity of composite coatings can be obtained as the number of depositions was four. Electromagnetic shielding effectiveness reached average 90.69 dB in the frequency range from 300 kHz to 2.0 GHz. This study provides a new pathway for fabricating lightweight multilayer-structured electromagnetic interference shielding with controllable electromagnetic gradient and hydrophobic composite coatings-based wood.


Sign in / Sign up

Export Citation Format

Share Document