Wetting Contact Angle Derivations of Cotton Assemblies with Varying Perimeters

1994 ◽  
Vol 64 (9) ◽  
pp. 552-553 ◽  
Author(s):  
Y.-L. Hsieh
2005 ◽  
Vol 127 (7) ◽  
pp. 684-691 ◽  
Author(s):  
Juntao Zhang ◽  
Raj M. Manglik

Interfacial phenomena and ebullient dynamics in saturated nucleate pool boiling of aqueous solutions of three surfactants that have different molecular weight and ionic nature are experimentally investigated. The additive molecular mobility at interfaces manifests in a dynamic surface tension behavior (surfactant adsorption–desorption at the liquid–vapor interface), and varying surface wetting (contact angle) with concentration (surfactant physisorption at the solid–liquid interface). This tends to change, enhance, and control the boiling behavior significantly, and an optimum heat transfer enhancement is obtained in solutions at or near the critical micelle concentration (CMC) of the surfactant. Furthermore, wettability (contact angle) is observed to be a function of the molecular makeup of the reagent, and shows distinct regions of change along the adsorption isotherm that are associated with the aggregation mode of adsorbed ions at the solid–water interface. This distinguishably alters the ebullience from not only that in pure water, but also between pre- and post-CMC solutions. Increased wetting tends to suppress nucleation and bubble growth, thereby weakening the boiling process.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 34 ◽  
Author(s):  
Piotr Szewczyk ◽  
Daniel Ura ◽  
Sara Metwally ◽  
Joanna Knapczyk-Korczak ◽  
Marcin Gajek ◽  
...  

Wettability of electrospun fibers is one of the key parameters in the biomedical and filtration industry. Within this comprehensive study of contact angles on three-dimensional (3D) meshes made of electrospun fibers and films, from seven types of polymers, we clearly indicated the importance of roughness analysis. Surface chemistry was analyzed with X-ray photoelectron microscopy (XPS) and it showed no significant difference between fibers and films, confirming that the hydrophobic properties of the surfaces can be enhanced by just roughness without any chemical treatment. The surface geometry was determining factor in wetting contact angle analysis on electrospun meshes. We noted that it was very important how the geometry of electrospun surfaces was validated. The commonly used fiber diameter was not necessarily a convincing parameter unless it was correlated with the surface roughness or fraction of fibers or pores. Importantly, this study provides the guidelines to verify the surface free energy decrease with the fiber fraction for the meshes, to validate the changes in wetting contact angles. Eventually, the analysis suggested that meshes could maintain the entrapped air between fibers, decreasing surface free energies for polymers, which increased the contact angle for liquids with surface tension above the critical Wenzel level to maintain the Cassie-Baxter regime for hydrophobic surfaces.


2020 ◽  
Vol 2 (5) ◽  
pp. 2127-2134 ◽  
Author(s):  
T. Dursap ◽  
M. Vettori ◽  
A. Danescu ◽  
C. Botella ◽  
P. Regreny ◽  
...  

It is well known that the crystalline structure of the III–V nanowires (NWs) is mainly controlled by the wetting contact angle of the catalyst droplet which can be tuned by the III and V flux.


2014 ◽  
Vol 685 ◽  
pp. 48-50
Author(s):  
Sheng Lu ◽  
De Hong Cheng ◽  
Yan Hua Lu ◽  
Zhi Cai Yu ◽  
Jie Lin

The cotton fabric was modified with polycarboxylic acid, silica sol and KH-550, and the modification effect was characterized by the capillary effect value, tension strength value, antistatic capability value and wetting contact angle. The results showed that the hydrophilic and tension strength of the modified fabrics were much better than those of non-modified ones. But the antistatic property of the modified cotton fabric was slightly lower.


Measurement ◽  
2013 ◽  
Vol 46 (9) ◽  
pp. 3623-3627 ◽  
Author(s):  
Douglas J.C. Gomes ◽  
Nara C. de Souza ◽  
Josmary R. Silva

2017 ◽  
Vol 29 (2) ◽  
pp. 270-280 ◽  
Author(s):  
Donatas Petrulis ◽  
Salvinija Petrulyte

Purpose The purpose of this paper is to propose the materials structure-wetting behaviour relationships and to show their peculiarities for some types of surgical woven fabrics and applications of liquids. Design/methodology/approach To show the effects of fabrics structure on wetting behaviour of surgical textile materials, the special structural indices in terms of yarns and filaments lateral area were used. Findings It was shown good correlation between total lateral area of filaments in unit area of woven fabrics and wetting contact angle of liquid drops on the tested samples. Probably due to different structure of woven fabrics at a level of fibres, another index, i.e. total lateral area of yarns in unit area of fabrics, is not suitable to show clear effect on wetting behaviour of the samples. The possibilities of applications of relationships for several types of textile materials and liquids were indicated. Originality/value To date there are no investigations concerning relationships between special structural properties of the surgical woven fabrics and their wetting behaviour. On a basis of the proposed approach into fabrics structure evaluation, this study developed analysis and some types of new equations for prediction of wetting contact angle of the materials.


2020 ◽  
Vol 54 ◽  
pp. 195-204
Author(s):  
Aliya Mukhametdinova ◽  
Tagir Karamov ◽  
Natalia Bogdanovich ◽  
Sergey Borisenko ◽  
Svetlana Rudakovskaya ◽  
...  

Abstract. In this work, we have investigated the wettability of Bazhenov Formation rock samples using a nuclear magnetic resonance (NMR), the methods of vapor adsorption, and wetting contact angle. We have conducted the petrographic description of rocks using ultra-thin sections and scanning electron microscopy (SEM). In addition, we used data on the organic content (TOC) obtained by the Rock-Eval method and the results of lithological typing on thin sections for detailed analysis of NMR and contact angle methods results. Thus, for target rock, the groups with a similar rock wettability were highlighted by the lithological description of thin sections. The calculation of the wetting angle provided an initial assessment of the surface wettability of the rock and made it possible to establish the relationship between the wetting angle and the TOC, which is relevant for rocks of the Abalak-Bazhenov group. The NMR method described the core plug wettability proved to be less sensitive to the rock lithotype and organic matter (OM) texture in the rock and, therefore, used for the integral characterization of core plugs. Correlations of calculated wetting angle and adsorption wettability index vs. TOC and OM texture illustrated the dependence of rock wettability behavior on both the lithological specifics and the OM properties.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2118 ◽  
Author(s):  
Tjaša Kraševac Glaser ◽  
Olivija Plohl ◽  
Alenka Vesel ◽  
Urban Ajdnik ◽  
Nataša Poklar Ulrih ◽  
...  

The present paper reports a novel method to improve the properties of polyethylene (PE) and polypropylene (PP) polymer foils suitable for applications in food packaging. It relates to the adsorption of chitosan-colloidal systems onto untreated and oxygen plasma-treated foil surfaces. It is hypothesized that the first coated layer of chitosan macromolecular solution enables excellent antibacterial properties, while the second (uppermost) layer contains a network of polyphenol resveratrol, embedded into chitosan nanoparticles, which enables antioxidant and antimicrobial properties simultaneously. X-ray photon spectroscopy (XPS) and infrared spectroscopy (FTIR) showed successful binding of both coatings onto foils as confirmed by gravimetric method. In addition, both attached layers (chitosan macromolecular solution and dispersion of chitosan nanoparticles with incorporated resveratrol) onto foils reduced oxygen permeability and wetting contact angle of foils; the latter indicates good anti-fog foil properties. Reduction of both oxygen permeability and wetting contact angle is more pronounced when foils are previously activated by O2 plasma. Moreover, oxygen plasma treatment improves stability and adhesion of chitosan structured adsorbates onto PP and PE foils. Foils also exhibit over 90% reduction of Staphylococcus aureus and over 77% reduction of Escherichia coli as compared to untreated foils and increase antioxidant activity for over a factor of 10. The present method may be useful in different packaging applications such as food (meat, vegetables, dairy, and bakery products) and pharmaceutical packaging, where such properties of foils are desired.


Sign in / Sign up

Export Citation Format

Share Document