Adaptive fuzzy control design for a class of uncertain switched lower triangular systems

2017 ◽  
Vol 40 (9) ◽  
pp. 2718-2723 ◽  
Author(s):  
Ning Xu ◽  
Xinyong Wang

In this paper, a tracking control problem is investigated for a class of uncertain switched lower triangular systems with disturbances. A state-feedback controller is designed by using the adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. The fuzzy logic system is used to approximate the unknown nonlinear functions. It is shown that the designed state-feedback controllers can ensure that all the signals remain bounded and the tracking error converges to a small neighbourhood of the origin. A simulation result is presented to show the effectiveness of the proposed approaches.

2005 ◽  
Vol 01 (01) ◽  
pp. 65-77 ◽  
Author(s):  
GUO-JUN WANG

Deduction theorem and its weak forms in classical mathematical logic system, Łukasiewicz logic system, Gödel logic system, product logic system, and the fuzzy logic system ℒ* are discussed and compared. It is pointed out that the weak form of deduction theorem in ℒ* has a clear structure and can be employed to define the concept of consistency degrees of finite theories. Moreover, it is clarified that the negation operator of Gödel type is too strong and is therefore unsuitable for establishing fuzzy logic systems.


Author(s):  
Masoud Mohammadian ◽  
Russel Stonier

In this paper the design and development of hierarchical fuzzy logic systems is investigated using genetic algorithms. This research study is unique in the way the proposed method is applied to the design and development of hierarchical fuzzy logic systems. The new method proposed determines the number of layers in the hierarchical fuzzy logic system. The proposed method is then applied to financial modelling and prediction. A hierarchical fuzzy logic system is developed to predict quarterly interest rates in Australia. The advantages and disadvantages of using hierarchical fuzzy logic systems for financial modelling is also considered. Good prediction of quarterly interest rate in Australia is obtained using the above method. The number of fuzzy rules used is reduced dramatically and prediction of interest rate is improved.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jinglei Zhou ◽  
Qunli Zhang

This paper designs a kind of adaptive fuzzy controller for robotic manipulator considering external disturbances and modeling errors. First, n-link uncertain robotic manipulator dynamics based on the Lagrange equation is changed into a two-order multiple-input multiple-output (MIMO) system via feedback technique. Then, an adaptive fuzzy logic control scheme is studied by using sliding theory, which adopts the adaptive fuzzy logic systems to estimate the uncertainties and employs a filtered error to make up for the approximation errors, hence enhancing the robust performance of robotic manipulator system uncertainties. It is proved that the tracking errors converge into zero asymptotically by using Lyapunov stability theory. Last, we take a two-link rigid robotic manipulator as an example and give its simulations. Compared with the existing results in the literature, the proposed controller shows higher precision and stronger robustness.


2019 ◽  
Vol 14 (2) ◽  
pp. 174-186
Author(s):  
Tajul Rosli Razak ◽  
Iman Hazwam Abd Halim ◽  
Muhammad Nabil Fikri Jamaludin ◽  
Mohammad Hafiz Ismail ◽  
Shukor Sanim Mohd Fauzi

Recommendation system, also known as a recommender system, is a tool to help the user in providing asuggestion of a specific dilemma. Recently, the interest in developing a recommendation system in manyfields has increased. Fuzzy Logic system (FLSs) is one of the approaches that can be used to model therecommendation systems as it can deal with uncertainty and imprecise information. However, one of thefundamental issues in FLS is the problem of the curse of dimensionality. That is, the number of rules inFLSs is increasing exponentially with the number of input variables. One effective way to overcome thisproblem is by using Hierarchical Fuzzy System (HFSs). This paper aims to explore the use of HFSs forRecommendation system. Specifically, we are interested in exploring and comparing the HFS and FLS forthe Career path recommendation system (CPRS) based on four key criteria, namely topology, the numberof rules, the rules structures and interpretability. The findings suggested that the HFS has advantagesover FLS towards improving the interpretability models, in the context of a recommendation systemexample. This study contributes to providing an insight into the development of interpretable HFSs in theRecommendation systems. Keywords: Fuzzy Logic Systems, Hierarchical Fuzzy Systems, Recommendation Systems


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4445
Author(s):  
M. A. Viraj J. Muthugala ◽  
S. M. Bhagya P. Samarakoon ◽  
Madan Mohan Rayguru ◽  
Balakrishnan Ramalingam ◽  
Mohan Rajesh Elara

Infectious diseases are caused by pathogenic microorganisms, whose transmission can lead to global pandemics like COVID-19. Contact with contaminated surfaces or objects is one of the major channels of spreading infectious diseases among the community. Therefore, the typical contaminable surfaces, such as walls and handrails, should often be cleaned using disinfectants. Nevertheless, safety and efficiency are the major concerns of the utilization of human labor in this process. Thereby, attention has drifted toward developing robotic solutions for the disinfection of contaminable surfaces. A robot intended for disinfecting walls should be capable of following the wall concerned, while maintaining a given distance, to be effective. The ability to operate in an unknown environment while coping with uncertainties is crucial for a wall disinfection robot intended for deployment in public spaces. Therefore, this paper contributes to the state-of-the-art by proposing a novel method of establishing the wall-following behavior for a wall disinfection robot using fuzzy logic. A non-singleton Type 1 Fuzzy Logic System (T1-FLS) and a non-singleton Interval Type 2 Fuzzy Logic System (IT2-FLS) are developed in this regard. The wall-following behavior of the two fuzzy systems was evaluated through simulations by considering heterogeneous wall arrangements. The simulation results validate the real-world applicability of the proposed FLSs for establishing the wall-following behavior for a wall disinfection robot. Furthermore, the statistical outcomes show that the IT2-FLS has significantly superior performance than the T1-FLS in this application.


Author(s):  
M. Mohammadian

Systems such as robotic systems and systems with large input-output data tend to be difficult to model using mathematical techniques. These systems have typically high dimensionality and have degrees of uncertainty in many parameters. Artificial intelligence techniques such as neural networks, fuzzy logic, genetic algorithms and evolutionary algorithms have created new opportunities to solve complex systems. Application of fuzzy logic [Bai, Y., Zhuang H. and Wang, D. (2006)] in particular, to model and solve industrial problems is now wide spread and has universal acceptance. Fuzzy modelling or fuzzy identification has numerous practical applications in control, prediction and inference. It has been found useful when the system is either difficult to predict and or difficult to model by conventional methods. Fuzzy set theory provides a means for representing uncertainties. The underlying power of fuzzy logic is its ability to represent imprecise values in an understandable form. The majority of fuzzy logic systems to date have been static and based upon knowledge derived from imprecise heuristic knowledge of experienced operators, and where applicable also upon physical laws that governs the dynamics of the process. Although its application to industrial problems has often produced results superior to classical control, the design procedures are limited by the heuristic rules of the system. It is simply assumed that the rules for the system are readily available or can be obtained. This implicit assumption limits the application of fuzzy logic to the cases of the system with a few parameters. The number of parameters of a system could be large. The number of fuzzy rules of a system is directly dependent on these parameters. As the number of parameters increase, the number of fuzzy rules of the system grows exponentially. Genetic Algorithms can be used as a tool for the generation of fuzzy rules for a fuzzy logic system. This automatic generation of fuzzy rules, via genetic algorithms, can be categorised into two learning techniques, supervised and unsupervised. In this paper unsupervised learning of fuzzy rules of hierarchical and multi-layer fuzzy logic control systems are considered. In unsupervised learning there is no external teacher or critic to oversee the learning process. In other words, there are no specific examples of the function to be learned by the system. Rather, provision is made for a task-independent measure of the quality or representation that the system is required to learn. That is the system learns statistical regularities of the input data and it develops the ability to learn the feature of the input data and thereby create new classes automatically [Mohammadian, M., Nainar, I. and Kingham, M. (1997)]. To perform unsupervised learning, a competitive learning strategy may be used. The individual strings of genetic algorithms compete with each other for the “opportunity” to respond to features contained in the input data. In its simplest form, the system operates in accordance with the strategy that ‘the fittest wins and survives’. That is the individual chromosome in a population with greatest fitness ‘wins’ the competition and gets selected for the genetic algorithms operations (cross-over and mutation). The other individuals in the population then have to compete with fit individual to survive. The diversity of the learning tasks shown in this paper indicates genetic algorithm’s universality for concept learning in unsupervised manner. A hybrid integrated architecture incorporating fuzzy logic and genetic algorithm can generate fuzzy rules for problems requiring supervised or unsupervised learning. In this paper only unsupervised learning of fuzzy logic systems is considered. The learning of fuzzy rules and internal parameters in an unsupervised manner is performed using genetic algorithms. Simulations results have shown that the proposed system is capable of learning the control rules for hierarchical and multi-layer fuzzy logic systems. Application areas considered are, hierarchical control of a network of traffic light control and robotic systems. A first step in the construction of a fuzzy logic system is to determine which variables are fundamentally important. Any number of these decision variables may appear, but the more that are used, the larger the rule set that must be found. It is known [Raju, S., Zhou J. and Kisner, R. A. (1990), Raju G. V. S. and Zhou, J. (1993), Kingham, M., Mohammadian, M, and Stonier, R. J. (1998)], that the total number of rules in a system is an exponential function of the number of system variables. In order to design a fuzzy system with the required accuracy, the number of rules increases exponentially with the number of input variables and its associated fuzzy sets for the fuzzy logic system. A way to avoid the explosion of fuzzy rule bases in fuzzy logic systems is to consider Hierarchical Fuzzy Logic Control (HFLC) [Raju G. V. S. and Zhou, J. (1993)]. A learning approach based on genetic algorithms [Goldberg, D. (1989)] is discussed in this paper for the determination of the rule bases of hierarchical fuzzy logic systems.


Author(s):  
Mohamed Hamdy ◽  
Sameh Abd-Elhaleem ◽  
M. A. Fkirin

This paper presents an adaptive fuzzy controller for a class of unknown nonlinear systems over network. The network-induced delays can degrade the performance of the networked control systems (NCSs) and also can destabilize the system. Moreover, the seriousness of the delay problem is aggravated when packet losses occur during a transmission of data. The proposed controller uses a filtered tracking error to cope the time-varying network-induced delays. It is also robust enough to cope some packet losses in the system. Fuzzy logic systems (FLSs) are used to approximate the unknown nonlinear functions that appear in the tracking controller. Based on Lyapunov stability theory, the constructed controller is proved to be asymptotically stable. Stability of the adaptive fuzzy controller is guaranteed in the presence of bounded external disturbance, time-varying delays, and data packet dropouts. Simulated application of the inverted pendulum tracking illustrates the effectiveness of the proposed technique with comparative results.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6584
Author(s):  
Ramadoss Janarthanan ◽  
R. Uma Maheshwari ◽  
Prashant Kumar Shukla ◽  
Piyush Kumar Shukla ◽  
Seyedali Mirjalili ◽  
...  

The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed value equal to or lower than T2 and ANN. Several explanations are conducted to illustrate the effectiveness of the methodologies. It is found that both the type 2 Fuzzy and ANN can be configured for productive actions in applications for a PV fault analysis, and choice is typically applied. The methods discussed in this paper lay the groundwork for developing FLSs and ANNs with durable characteristics that will be extremely useful in many functional applications. The result demonstrates that specific fault categories can be detected using the fault identification method, such as damaged PV modules and partial PV unit shades. The average detection performance is similar in both ANN and fuzzy techniques. In comparison, both systems evaluated show approximately the same performance during experiments. The architecture of the type 2 fuzzy logic system and ANN with radial basic function, including the roles of the output port and the rules for identifying the type of defect in the PV structure is slightly different.


Author(s):  
Masoud Mohammadian

In this article the design and development of a hierarchical fuzzy logic system is investigated. A new method using an evolutionary algorithm for design of hierarchical fuzzy logic system for prediction and modelling of interest rates in Australia is developed. The hierarchical system is developed to model and predict three months (quarterly) interest rate fluctuations. This research study is unique in the way proposed method is applied to design and development of fuzzy logic systems. The new method proposed determines the number of layer for hierarchical fuzzy logic system. The advantages and disadvantages of using fuzzy logic systems for financial modelling is also considered. Conclusions on the accuracy of prediction using hierarchical fuzzy logic systems compared to a back-propagation neural network system and a hierarchical neural network are reported.


Sign in / Sign up

Export Citation Format

Share Document