scholarly journals Stability analysis of the high-order nonlinear extended state observers for a class of nonlinear control systems

2019 ◽  
Vol 41 (15) ◽  
pp. 4370-4379 ◽  
Author(s):  
Ke Gao ◽  
Jia Song ◽  
Erfu Yang

The nonlinear extended state observer (ESO) is a novel observer for a class of nonlinear control system. However, the non-smooth structure of the nonlinear ESO makes it difficult to measure the stability. In this paper, the stability problem of the nonlinear ESO is considered. The describing function (DF) method is adopted to analyze the stability of high-order nonlinear ESOs. The main result of the paper shows the existence of the self-oscillation and a sufficient stability condition for high-order nonlinear ESOs. Based on the analysis results, we give a simple and fast parameter tuning method for the nonlinear ESO and the active disturbance rejection control (ADRC). Realistic application simulations show the effectiveness of the proposed parameter tuning method.

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dong Mei ◽  
Zhu-Qing Yu

Purpose This paper aims to study a disturbance rejection controller to improve the anti-interference capability and the position tracking performance of airborne radar stabilized platform that ensures the stability and clarity of synthetic aperture radar imaging. Design/methodology/approach This study proposes a disturbance rejection control scheme for an airborne radar stabilized platform based on the active disturbance rejection control (ADRC) inverse estimation algorithm. Exploiting the extended state observer (ESO) characteristic, an inversely ESO is developed to inverse estimate the unmodeled state and extended state of the platform system known as total disturbances, which greatly improves the estimation performance of the disturbance. Then, based on the inverse ESO result, feedback the difference between the output of the tracking differentiator and the inverse ESO result to the nonlinear state error feedback controller (NLSEF) to eliminate the effects of total disturbance and ensure the stability of the airborne radar stabilized platform. Findings Simulation experiments are adopted to compare the performance of the ADRC inverse estimation algorithm with that of the proportional integral derivative controller which is one of the mostly applied control schemes in platform systems. In addition, classical ADRC is compared as well. The results have shown that the ADRC inverse estimation algorithm has a better disturbance rejection performance when disturbance acts in airborne radar stabilized platform, especially disturbed by continuous airflow under some harsh air conditions. Originality/value The originality of this paper is exploiting the ESO characteristic to develop an inverse ESO, which greatly improves the estimation performance of the disturbance. And the ADRC inverse estimation algorithm is applied to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1651 ◽  
Author(s):  
Amjad J. Humaidi ◽  
Ibraheem Kasim Ibraheem

In this paper, a novel finite-time nonlinear extended state observer (NLESO) is proposed and employed in active disturbance rejection control (ADRC) to stabilize a nonlinear system against system’s uncertainties and discontinuous disturbances using output feedback based control. The first task was to aggregate the uncertainties, disturbances, and any other undesired nonlinearities in the system into a single term called the “generalized disturbance”. Consequently, the NLESO estimates the generalized disturbance and cancel it from the input channel in an online fashion. A peaking phenomenon that existed in linear ESO (LESO) has been reduced significantly by adopting a saturation-like nonlinear function in the proposed nonlinear ESO (NLESO). Stability analysis of the NLEO is studied using finite-time Lyapunov theory, and the comparisons are presented over simulations on permanent magnet DC (PMDC) motor to confirm the effectiveness of the proposed observer concerning LESO.


2019 ◽  
Vol 41 (10) ◽  
pp. 2864-2874
Author(s):  
Ya-Ping Guo ◽  
Jun-Min Wang

In this paper, we are concerned with nondissipative controllers design of a rotating flexible structure subject to boundary control matched disturbances. The active disturbance rejection control (ADRC) method is adopted to cancel the disturbances. Firstly, the time varying gain extend state observers (ESOs) are constructed to estimate the disturbances. Then, using estimates of uncertainties generated by ESOs, nondissipative torque control and shear control are designed for disk and beam respectively. Finally, when the angular velocity of the disk is less than the square root of the smallest natural frequency of the beam, we prove that the proposed controllers can ensure the stability of the closed-loop system in the sense that the disk can be rotated with the desired angular velocity and the beam can be stabilized. Moreover, simulation results are presented to illustrate the effectiveness of the control strategy.


2016 ◽  
Vol 62 ◽  
pp. 276-286 ◽  
Author(s):  
Nadhynee Martínez-Fonseca ◽  
Luis Ángel Castañeda ◽  
Agustín Uranga ◽  
Alberto Luviano-Juárez ◽  
Isaac Chairez

Author(s):  
Zhaoji Wang ◽  
Tong Zhao

This paper proposes a linear active disturbance rejection control (LADRC) scheme for a quadrotor unmanned aerial vehicle (UAV) with external disturbances based on adaptive control to address the attitude control problem. Firstly, the dynamic model of the quadrotor is established, and LADRC is used to control the altitude, yaw angle, pitch angle and roll angle of the quadrotor UAV affected by external disturbances, which enhances the anti-disturbance ability of the system. In addition, adaptive control is introduced to solve the problem of difficult parameter tuning in LADRC. Then, the stability of the system is demonstrated by Lyapunov theory. Finally, the simulation results verify the effectiveness of the proposed control scheme under external disturbances.


2017 ◽  
Vol 40 (4) ◽  
pp. 1328-1339 ◽  
Author(s):  
Ling Zhao ◽  
Linlin Ge ◽  
Tao Wang

In this paper, position control is addressed for a two-joint robot finger system driven by pneumatic artificial muscles. It is hard to obtain high precision control for a two-joint robot finger system due to coupling and nonlinearities. A two-input and two-output decoupling problem is solved via active disturbance rejection control without complicated calculations. An extended state observer is designed to estimate the nonlinearities. Furthermore, the stability of the two-joint robot finger system is shown by a back-stepping method. Results from experiments are demonstrated to show the effectiveness of the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document