Enhanced data-driven optimal iterative learning control for nonlinear non-affine discrete-time systems with iterative sliding-mode surface

2020 ◽  
Vol 42 (11) ◽  
pp. 1923-1934 ◽  
Author(s):  
Rongrong Wang ◽  
Yangchun Wei ◽  
Ronghu Chi

In this work, an enhanced data-driven optimal iterative learning control (eDDOILC) is proposed for nonlinear nonaffine systems where a new iterative sliding mode surface (ISMS) is designed to replace the traditional tracking error in the controller design and analysis. It is the first time to extend the sliding mode surface to the iteration domain for systems operate repetitively over a finite time interval. By virtual of the new designed ISMS, the control design becomes more flexible where both the time and the iteration dynamics can be taken into account. Before proceeding to the controller design, an iterative dynamic linear data model is built between two consecutive iterations to formulate the linear input-output data relationship of the repetitive nonlinear nonaffine discrete-time system. The linear data model is virtual and does not have any physical meanings, which is very different to the traditional mechanism mathematical model. In the sequel, the eDDOILC is proposed by designing an objective function with respect to the proposed two-dimensional ISMS. Rigorous proof is provided to show the convergence of the proposed eDDOILC method. Furthermore, the results have been extended to a multiple-input multiple-output (MIMO) nonaffine nonlinear discrete-time repetitive system. In general, the proposed eDDOILC is data-driven where no explicit model information is included. It is illustrated that the presented eDDOILC is effective when applied to the nonlinear nonaffine uncertain systems.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shangtai Jin ◽  
Zhongsheng Hou ◽  
Ronghu Chi

A data-driven predictive terminal iterative learning control (DDPTILC) approach is proposed for discrete-time nonlinear systems with terminal tracking tasks, where only the terminal output tracking error instead of entire output trajectory tracking error is available. The proposed DDPTILC scheme consists of an iterative learning control law, an iterative parameter estimation law, and an iterative parameter prediction law. If the partial derivative of the controlled system with respect to control input is bounded, then the proposed control approach guarantees the terminal tracking error convergence. Furthermore, the control performance is improved by using more information of predictive terminal outputs, which are predicted along the iteration axis and used to update the control law and estimation law. Rigorous analysis shows the monotonic convergence and bounded input and bounded output (BIBO) stability of the DDPTILC. In addition, extensive simulations are provided to show the applicability and effectiveness of the proposed approach.


2020 ◽  
Vol 42 (12) ◽  
pp. 2166-2177
Author(s):  
Gaoyang Jiang ◽  
Zhongsheng Hou

Trajectory-based aircraft operation and control is one of the hot issues in air traffic management. However, the accurate mechanism modeling of aircraft is tough work, and the operation data have not been effectively utilized in many studies. So, in this work, we apply the model-free adaptive iterative learning control method to address the time-of-arrival control problem in trajectory-based aircraft operation. This problem is first formulated into a trajectory tracking problem with along-track wind disturbance. Through rigorous analysis, it is shown that this method, combined with point-to-point iterative learning control (ILC) strategy, can effectively deal with the arrival time control problem with multiple time constraints. Then, the terminal ILC strategy is applied, aiming to resolve the same problem with a time constraint at the end point. Compared with the PID (Proportional Integral Derivative) type ILC, the proposed method improves control performance by 11.15% in root mean square of tracking error and 9.32% in integral time absolute error. The sensitivity and flexibility of the data-driven approach is further verified through numerical simulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xuan Yang

A PD-type iterative learning control algorithm is applied to a class of linear discrete-time switched systems for tracking desired trajectories. The application is based on assumption that the switched systems repetitively operate over a finite time interval and the switching rules are arbitrarily prespecified. By taking advantage of the super-vector approach, a sufficient condition of the monotone convergence of the algorithm is deduced when both the model uncertainties and the external noises are absent. Then the robust monotone convergence is analyzed when the model uncertainties are present and the robustness against the bounded external noises is discussed. The analysis manifests that the proposed PD-type iterative learning control algorithm is feasible and effective when it is imposed on the linear switched systems specified by the arbitrarily preset switching rules. The attached simulations support the feasibility and the effectiveness.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xuan Yang ◽  
Xiaoe Ruan

An iterative learning control scheme is applied to a class of linear discrete-time switched systems with arbitrary switching rules. The application is based on the assumption that the switched system repetitively operates over a finite time interval. By taking advantage of the super vector approach, convergence is discussed when noise is free and robustness is analyzed when the controlled system is disturbed by bounded noise. The analytical results manifest that the iterative learning control algorithm is feasible and effective for the linear switched system. To support the theoretical analysis, numerical simulations are made.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Geng ◽  
Xiaoe Ruan ◽  
Hyo-Sung Ahn

This paper develops a type of data-driven networked optimal iterative learning control strategy for a class of discrete linear time-varying systems with one-operation Bernoulli-type communication delays. In terms of the stochastic Bernoulli-type one-operation communication delayed inputs and outputs, the previous-iteration synchronous compensations are adopted. By means of deriving gradients of two types of objective functions that express the optimal approximation of the system matrix and the minimal tracking error, the strategy approximates the system matrix and upgrades the control inputs in an interact mode as the iteration evolves. By taking advantage of matrix theory and statistical technique, it is derived that the approximation discrepancy of the system matrix is bounded and the mathematical expectation of the tracking error vanishes as the iteration goes on. Numerical simulations manifest the validity and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document