Defect identification in magnetic tile images using an improved nonlinear diffusion method

Author(s):  
Mohamed Ben Gharsallah ◽  
Ezzedine Ben Braiek

Visual inspection of surface defects is a crucial step in the magnetic tile manufacturing process. Magnetic tile images suffer from a non-uniform illumination, texture and noise that disperse irregularly in flawless image areas. As a result, common edge detection and threshold segmentation techniques fail to identify these kinds of defects. In this work, we present a robust algorithm for defect identification in magnetic tile images. The proposed method is based on a new anisotropic diffusion filtering model. Unlike traditional anisotropic diffusion models that take into account only gradient magnitude information, the proposed model combines together gradient magnitude and a new local difference image feature. The aim is to remove bright shapes and undesirable artifacts in the faultless region in magnetic tile images. In addition, the method activates a smoothing process in the flawless region to homogenize the background and simultaneously a sharpening in the defect boundaries to highlight anomalies. Experimental results on a number of magnetic tiles samples containing different types of defects have demonstrated the efficiency of the proposed diffusion method.

2020 ◽  
Vol 64 (1) ◽  
pp. 10505-1-10505-16
Author(s):  
Yin Zhang ◽  
Xuehan Bai ◽  
Junhua Yan ◽  
Yongqi Xiao ◽  
C. R. Chatwin ◽  
...  

Abstract A new blind image quality assessment method called No-Reference Image Quality Assessment Based on Multi-Order Gradients Statistics is proposed, which is aimed at solving the problem that the existing no-reference image quality assessment methods cannot determine the type of image distortion and that the quality evaluation has poor robustness for different types of distortion. In this article, an 18-dimensional image feature vector is constructed from gradient magnitude features, relative gradient orientation features, and relative gradient magnitude features over two scales and three orders on the basis of the relationship between multi-order gradient statistics and the type and degree of image distortion. The feature matrix and distortion types of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion type; the feature matrix and subjective scores of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion degree. A series of comparative experiments were carried out using Laboratory of Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality, Tampere Image, and Optics Remote Sensing Image databases. Experimental results show that the proposed method has high distortion type judgment accuracy and that the quality score shows good subjective consistency and robustness for all types of distortion. The performance of the proposed method is not constricted to a particular database, and the proposed method has high operational efficiency.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 1033-1045
Author(s):  
Guodong Zhou ◽  
Huailiang Zhang ◽  
Raquel Martínez Lucas

Abstract Aiming at the excellent descriptive ability of SURF operator for local features of images, except for the shortcoming of global feature description ability, a compressed sensing image restoration algorithm based on improved SURF operator is proposed. The SURF feature vector set of the image is extracted, and the vector set data is reduced into a single high-dimensional feature vector by using a histogram algorithm, and then the image HSV color histogram is extracted.MSA image decomposition algorithm is used to obtain sparse representation of image feature vectors. Total variation curvature diffusion method and Bayesian weighting method perform image restoration for data smoothing feature and local similarity feature of texture part respectively. A compressed sensing image restoration model is obtained by using Schatten-p norm, and image color supplement is performed on the model. The compressed sensing image is iteratively solved by alternating optimization method, and the compressed sensing image is restored. The experimental results show that the proposed algorithm has good restoration performance, and the restored image has finer edge and texture structure and better visual effect.


2021 ◽  
Author(s):  
Chris Onof ◽  
Yuting Chen ◽  
Li-Pen Wang ◽  
Amy Jones ◽  
Susana Ochoa Rodriguez

<p>In this work a two-stage (rainfall nowcasting + flood prediction) analogue model for real-time urban flood forecasting is presented. The proposed approach accounts for the complexities of urban rainfall nowcasting while avoiding the expensive computational requirements of real-time urban flood forecasting.</p><p>The model has two consecutive stages:</p><ul><li><strong>(1) Rainfall nowcasting: </strong>0-6h lead time ensemble rainfall nowcasting is achieved by means of an analogue method, based on the assumption that similar climate condition will define similar patterns of temporal evolution of the rainfall. The framework uses the NORA analogue-based forecasting tool (Panziera et al., 2011), consisting of two layers. In the <strong>first layer, </strong>the 120 historical atmospheric (forcing) conditions most similar to the current atmospheric conditions are extracted, with the historical database consisting of ERA5 reanalysis data from the ECMWF and the current conditions derived from the US Global Forecasting System (GFS). In the <strong>second layer</strong>, twelve historical radar images most similar to the current one are extracted from amongst the historical radar images linked to the aforementioned 120 forcing analogues. Lastly, for each of the twelve analogues, the rainfall fields (at resolution of 1km/5min) observed after the present time are taken as one ensemble member. Note that principal component analysis (PCA) and uncorrelated multilinear PCA methods were tested for image feature extraction prior to applying the nearest neighbour technique for analogue selection.</li> <li><strong>(2) Flood prediction: </strong>we predict flood extent using the high-resolution rainfall forecast from Stage 1, along with a database of pre-run flood maps at 1x1 km<sup>2</sup> solution from 157 catalogued historical flood events. A deterministic flood prediction is obtained by using the averaged response from the twelve flood maps associated to the twelve ensemble rainfall nowcasts, where for each gridded area the median value is adopted (assuming flood maps are equiprobabilistic). A probabilistic flood prediction is obtained by generating a quantile-based flood map. Note that the flood maps were generated through rolling ball-based mapping of the flood volumes predicted at each node of the InfoWorks ICM sewer model of the pilot area.</li> </ul><p>The Minworth catchment in the UK (~400 km<sup>2</sup>) was used to demonstrate the proposed model. Cross‑assessment was undertaken for each of 157 flooding events by leaving one event out from training in each iteration and using it for evaluation. With a focus on the spatial replication of flood/non-flood patterns, the predicted flood maps were converted to binary (flood/non-flood) maps. Quantitative assessment was undertaken by means of a contingency table. An average accuracy rate (i.e. proportion of correct predictions, out of all test events) of 71.4% was achieved, with individual accuracy rates ranging from 57.1% to 78.6%). Further testing is needed to confirm initial findings and flood mapping refinement will be pursued.</p><p>The proposed model is fast, easy and relatively inexpensive to operate, making it suitable for direct use by local authorities who often lack the expertise on and/or capabilities for flood modelling and forecasting.</p><p><strong>References: </strong>Panziera et al. 2011. NORA–Nowcasting of Orographic Rainfall by means of Analogues. Quarterly Journal of the Royal Meteorological Society. 137, 2106-2123.</p>


Author(s):  
Santosh Kumar ◽  
Nitendra Kumar ◽  
Khursheed Alam

Background: In the image processing area, deblurring and denoising are the most challenging hurdles. The deblurring image by a spatially invariant kernel is a frequent problem in the field of image processing. Methods: For deblurring and denoising, the total variation (TV norm) and nonlinear anisotropic diffusion models are powerful tools. In this paper, nonlinear anisotropic diffusion models for image denoising and deblurring are proposed. The models are developed in the following manner: first multiplying the magnitude of the gradient in the anisotropic diffusion model, and then apply priori smoothness on the solution image by Gaussian smoothing kernel. Results: The finite difference method is used to discretize anisotropic diffusion models with forward-backward diffusivities. Conclusion: The results of the proposed model are given in terms of the improvement.


2020 ◽  
Vol 12 (11) ◽  
pp. 1746
Author(s):  
Salman Ahmadi ◽  
Saeid Homayouni

In this paper, we propose a novel approach based on the active contours model for change detection from synthetic aperture radar (SAR) images. In order to increase the accuracy of the proposed approach, a new operator was introduced to generate a difference image from the before and after change images. Then, a new model of active contours was developed for accurately detecting changed regions from the difference image. The proposed model extracts the changed areas as a target feature from the difference image based on training data from changed and unchanged regions. In this research, we used the Otsu histogram thresholding method to produce the training data automatically. In addition, the training data were updated in the process of minimizing the energy function of the model. To evaluate the accuracy of the model, we applied the proposed method to three benchmark SAR data sets. The proposed model obtains 84.65%, 87.07%, and 96.26% of the Kappa coefficient for Yellow River Estuary, Bern, and Ottawa sample data sets, respectively. These results demonstrated the effectiveness of the proposed approach compared to other methods. Another advantage of the proposed model is its high speed in comparison to the conventional methods.


Author(s):  
Gonzalo Vegas-Sanchez-Ferrero ◽  
Gabriel Ramos-Llorden ◽  
Rodrigo de Luis-Garcia ◽  
Antonio Tristan-Vega ◽  
Santiago Aja-Fernandez

Author(s):  
Nicolas Peyret ◽  
Gaël Chevallier ◽  
Jean-Luc Dion

In structural dynamics, the prediction of damping remains the biggest challenge. This paper deals with the energy losses caused by micro-slip in a nominally planar interface of a structure. This paper proposes an analytical and experimental study of flexural vibrations of a clamped-clamped beam with innovative position of the interfaces. The objective of this test bench is to characterize the global rheology of the interface. The proposed model aims to characterize this rheology based on local settings of the interface. First, the test bench is described and the choice of the position of the interface is justified. The experimental bench and the dynamic behavior of this structure are presented. We propose to illustrate the mechanism of energy losses by micro-slip by making a comparison between the behavior of a “monolithic” beam and a sectioned beam. Secondly, a modeling of the interface taking into account the surface defect is presented. The energy dissipated by friction in the interface is calculated during a loading cycle. This leads to a computation of the dissipated energy and thus to a nonlinear loss factor. Finally, we confront the loss factor calculated analytically and the measured one.


Sign in / Sign up

Export Citation Format

Share Document