scholarly journals Investigation on the mechanism of hydraulic fracture propagation and fracture geometry control in tight heterogeneous glutenites

2021 ◽  
pp. 014459872110362
Author(s):  
Mingyang Zhai ◽  
Dongying Wang ◽  
Lianchong Li ◽  
Zilin Zhang ◽  
Liaoyuan Zhang ◽  
...  

The tight heterogeneous glutenites are typically characterized by highly variable lithology, low/ultra-low permeability, significant heterogeneity, and a less-developed natural fracture system. It is of great significance for economic development to improve hydraulic fracture complexity and stimulated reservoir volume. To better understand the hydraulic fracturing mechanism, a large-scale experimental test on glutenite specimens was conducted and the hydraulic fracture propagation behaviors and focal mechanism were analyzed. A three-dimensional numerical model was developed to reproduce the hydraulic fracture evolution process and investigate the effects of operating procedures on hydraulic fracture geometry and stimulated reservoir volume. A simultaneous variable injection rate and fluid viscosity technology was proposed to increase the hydraulic fracture complexity and stimulated reservoir volume. The results indicate that four fracturing behaviors can be observed, namely, penetration, deflection, termination, and bifurcating, in the laboratory experiment. Tensile events tend to appear during the initiation stage of hydraulic fracture growth, while shear events and compressive events tend to appear during the non-planar propagation stage. The shear and compressive mechanisms dominate with an increase in the hydraulic fracture complexity. The variable injection rate technology and simultaneous variable injection rate and fluid viscosity technology are effective techniques for fracture geometry control and stimulated reservoir volume enhancement. The key to improve hydraulic fracture complexity is to increase the net pressure in hydraulic fractures, cause evident pressure fluctuations, and activate or communicate a wide range of natural discontinuities. The results can provide a better understanding of the fracture geometry control mechanism in tight heterogeneous glutenites, and offer a guideline for treatment design and optimization of well performance.

SPE Journal ◽  
2017 ◽  
Vol 22 (06) ◽  
pp. 1714-1738 ◽  
Author(s):  
Mahdi Haddad ◽  
Jing Du ◽  
Sandrine Vidal-Gilbert

Summary Microseismic mapping during the hydraulic-fracturing processes in the Vaca Muerta (VM) Shale in Argentina shows a group of microseismic events occurring at shallower depth and at later injection time, and they clearly deviate from the growing planar hydraulic fracture. This spatial and temporal behavior of these shallow microseismic events incurs some questions regarding the nature of these events and their connectivity to the hydraulic fracture. To answer these questions, in this article, we investigate these phenomena by use of a true 3D fracture-propagation-modeling tool along with statistical analysis on the properties of microseismic events. First, we propose a novel technique in Abaqus incorporating fracture intersections in true 3D hydraulic-fracture-propagation simulations by use of a pore-pressure cohesive zone model (CZM), which is validated by comparing our numerical results with the Khristianovic-Geertsma-de Klerk (KGD) solution (Khristianovic and Zheltov 1955; Geertsma and de Klerk 1969). The simulations fully couple slot flow in the fracture with poroelasticity in the matrix and continuum-based leakoff on the fracture walls, and honor the fracture-tip effects in quasibrittle shales. By use of this model, we quantify vertical-natural-fracture activation and fluid infiltration depending on reservoir depth, fracturing-fluid viscosity, mechanical properties of the natural-fracture cohesive layer, natural-fracture conductivity, and horizontal stress contrast. The modeling results demonstrate this natural-fracture activation in coincidence with the hydraulic-fracture-growth complexities at the intersection, such as height throttling, sharp aperture reduction after the intersection, and multibranching at various heights and directions. Finally, we investigate the hydraulic-fracture intersection with a natural fracture in the multilayer VM Shale. We infer the natural-fracture location and orientation from the microseismic-events map and formation microimager log in a nearby vertical well, respectively. We integrate the other field information such as mechanical, geological, and operational data to provide a realistic hydraulic-fracturing simulation in the presence of a natural fracture. Our 3D fracturing simulations equipped with the new fracture-intersection model rigorously simulate the growth of a realistic hydraulic-connection path toward the natural fracture at shallower depths, which was in agreement with our microseismic observations.


2021 ◽  
Author(s):  
Jiacheng Wang ◽  
Jon Olson

Abstract We propose an adaptive Eulerian-Lagrangian (E-L) proppant module and couple it with our simplified three-dimensional displacement discontinuity method (S3D DDM) hydraulic fracture model. The integrated model efficiently calculates proppant transport during three-dimensional (3D) hydraulic fracture propagation in multi-layer formations. The results demonstrate that hydraulic fracture height growth mitigates the form of proppant bed, so the proppant placement is more uniform in the hydraulic fracture under a smaller stress contrast. A higher fracturing fluid viscosity improves the suspension of proppant particles and generates a fracture larger in height and width but shorter in length. Lower proppant density and particle size reduce the proppant settling and create more uniform proppant placements, while they do not affect the hydraulic fracture geometry. Moreover, a larger proppant particle size limits the accessibility of the hydraulic fracture to the proppant, so the larger proppant particles do not fill the fracture tip and edge where the fracture width is small.


2020 ◽  
Vol 10 (8) ◽  
pp. 3333-3345
Author(s):  
Ali Al-Rubaie ◽  
Hisham Khaled Ben Mahmud

Abstract All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2292-2307 ◽  
Author(s):  
Jizhou Tang ◽  
Kan Wu ◽  
Lihua Zuo ◽  
Lizhi Xiao ◽  
Sijie Sun ◽  
...  

Summary Weak bedding planes (BPs) that exist in many tight oil formations and shale–gas formations might strongly affect fracture–height growth during hydraulic–fracturing treatment. Few of the hydraulic–fracture–propagation models developed for unconventional reservoirs are capable of quantitatively estimating the fracture–height containment or predicting the fracture geometry under the influence of multiple BPs. In this paper, we introduce a coupled 3D hydraulic–fracture–propagation model considering the effects of BPs. In this model, a fully 3D displacement–discontinuity method (3D DDM) is used to model the rock deformation. The advantage of this approach is that it addresses both the mechanical interaction between hydraulic fractures and weak BPs in 3D space and the physical mechanism of slippage along weak BPs. Fluid flow governed by a finite–difference methodology considers the flow in both vertical fractures and opening BPs. An iterative algorithm is used to couple fluid flow and rock deformation. Comparison between the developed model and the Perkins–Kern–Nordgren (PKN) model showed good agreement. I–shaped fracture geometry and crossing–shaped fracture geometry were analyzed in this paper. From numerical investigations, we found that BPs cannot be opened if the difference between overburden stress and minimum horizontal stress is large and only shear displacements exist along the BPs, which damage the planes and thus greatly amplify their hydraulic conductivity. Moreover, sensitivity studies investigate the impact on fracture propagation of parameters such as pumping rate (PR), fluid viscosity, and Young's modulus (YM). We investigated the fracture width near the junction between a vertical fracture and the BPs, the latter including the tensile opening of BPs and shear–displacement discontinuities (SDDs) along them. SDDs along BPs increase at the beginning and then decrease at a distance from the junction. The width near the junctions, the opening of BPs, and SDDs along the planes are directly proportional to PR. Because viscosity increases, the width at a junction increases as do the SDDs. YM greatly influences the opening of BPs at a junction and the SDDs along the BPs. This model estimates the fracture–width distribution and the SDDs along the BPs near junctions between the fracture tip and BPs and enables the assessment of the PR required to ensure that the fracture width at junctions and along intersected BPs is sufficient for proppant transport.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yulong Zhang ◽  
Bei Han ◽  
Xin Zhang ◽  
Yun Jia ◽  
Chun Zhu

Abstract The interaction mode of induced fracture and natural fracture plays an important role in prediction of hydraulic fracture propagation. In this paper, a two-dimensional hydromechanical coupled discrete element model is first introduced in the framework of particle flow simulation, which can well take into account mechanical and hydraulic properties of rock samples with natural fracture. The model’s parameters are strictly calibrated by conducting numerical simulations of uniaxial compression test and direct tensile and shear tests, as well as fluid flow test. The effectiveness of coupled model is also assessed by describing hydraulic fracture propagation in two representative cases, respectively, rock samples with and without preexisting fracture. With this model in hand, the effects of interaction between induced and natural fractures with different approach angles and differential stresses on fluid injection pressure and fracture propagation patterns are investigated and discussed. Results suggest that the interaction modes mainly involve three basic behaviors including the arrested, captured with offset, and directly crossing. For a given differential stress, the captured offset of hydraulic fracture by natural fracture gradually decreases with the approach angle increase, while for a fixed approach angle, that captured offset increases with differential stress decrease.


Sign in / Sign up

Export Citation Format

Share Document