scholarly journals Relationship between depression, prefrontal creatine and grey matter volume

2021 ◽  
pp. 026988112110505
Author(s):  
Paul Faulkner ◽  
Susanna Lucini Paioni ◽  
Petya Kozhuharova ◽  
Natasza Orlov ◽  
David J Lythgoe ◽  
...  

Background: Depression and low mood are leading contributors to disability worldwide. Research indicates that clinical depression may be associated with low creatine concentrations in the brain and low prefrontal grey matter volume. Because subclinical depression also contributes to difficulties in day-to-day life, understanding the neural mechanisms of depressive symptoms in all individuals, even at a subclinical level, may aid public health. Methods: Eighty-four young adult participants completed the Depression, Anxiety and Stress Scale (DASS) to quantify severity of depression, anxiety and stress, and underwent 1H-Magnetic Resonance Spectroscopy of the medial prefrontal cortex and structural magnetic resonance imaging (MRI) to determine whole-brain grey matter volume. Results/outcomes: DASS depression scores were negatively associated (a) with concentrations of creatine (but not other metabolites) in the prefrontal cortex and (b) with grey matter volume in the right superior medial frontal gyrus. Medial prefrontal creatine concentrations and right superior medial frontal grey matter volume were positively correlated. DASS anxiety and DASS stress scores were not related to prefrontal metabolite concentrations or whole-brain grey matter volume. Conclusions/interpretations: This study provides preliminary evidence from a representative group of individuals who exhibit a range of depression levels that prefrontal creatine and grey matter volume are negatively associated with depression. While future research is needed to fully understand this relationship, these results provide support for previous findings, which indicate that increasing creatine concentrations in the prefrontal cortex may improve mood and well-being.

2021 ◽  
Author(s):  
Paul Faulkner ◽  
Susanna Lucini Paioni ◽  
Petya Kozhuharova ◽  
Natasza Orlov ◽  
David J. Lythgoe ◽  
...  

AbstractBackgroundDepression and low mood are leading contributors to disability worldwide. Research indicates that clinical depression may be associated with low creatine concentrations in the brain and low prefrontal gray matter volume. Because sub-clinical depression also contributes to difficulties in day-to-day life, understanding the neural mechanisms of depressive symptoms in all individuals, even at a sub-clinical level, may aid public health.MethodsEighty-four young adult participants completed the Depression, Anxiety and Stress Scale (DASS) to quantify severity of depression, anxiety and stress, and underwent 1H-Magnetic Resonance Spectroscopy of the medial prefrontal cortex and structural MRI to determine whole-brain gray matter volume.Results/OutcomesDASS depression scores were negatively associated with A) concentrations of creatine (but not other metabolites) in the prefrontal cortex, and B) with gray matter volume in the right superior medial frontal gyrus. Medial prefrontal creatine concentrations and right superior medial frontal gray matter volume were positively correlated. DASS anxiety and DASS stress scores were not related to prefrontal metabolite concentrations or whole-brain gray matter volume.Conclusions/InterpretationsThis study provides preliminary evidence from a representative group of individuals who exhibit a range of depression levels, that prefrontal creatine and gray matter volume are negatively associated with depression. While future research is needed to fully understand this relationship, these results provide support for previous findings which indicate that increasing creatine concentrations in the prefrontal cortex may improve mood and wellbeing.Declaration of Interest/FundingThis research was partly funded by a British Academy/Leverhulme Trust Research Grant, awarded to PA.


2016 ◽  
Vol 23 (11) ◽  
pp. 1469-1478 ◽  
Author(s):  
Gourab Datta ◽  
Ines R Violante ◽  
Gregory Scott ◽  
Karl Zimmerman ◽  
Andre Santos-Ribeiro ◽  
...  

Background: Multiple sclerosis (MS) is characterised by a diffuse inflammatory response mediated by microglia and astrocytes. Brain translocator protein (TSPO) positron-emission tomography (PET) and [myo-inositol] magnetic resonance spectroscopy (MRS) were used together to assess this. Objective: To explore the in vivo relationships between MRS and PET [11C]PBR28 in MS over a range of brain inflammatory burden. Methods: A total of 23 patients were studied. TSPO PET imaging with [11C]PBR28, single voxel MRS and conventional magnetic resonance imaging (MRI) sequences were undertaken. Disability was assessed by Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC). Results: [11C]PBR28 uptake and [ myo-inositol] were not associated. When the whole cohort was stratified by higher [11C]PBR28 inflammatory burden, [ myo-inositol] was positively correlated to [11C]PBR28 uptake (Spearman’s ρ = 0.685, p = 0.014). Moderate correlations were found between [11C]PBR28 uptake and both MRS creatine normalised N-acetyl aspartate (NAA) concentration and grey matter volume. MSFC was correlated with grey matter volume (ρ = 0.535, p = 0.009). There were no associations between other imaging or clinical measures. Conclusion: MRS [ myo-inositol] and PET [11C]PBR28 measure independent inflammatory processes which may be more commonly found together with more severe inflammatory disease. Microglial activation measured by [11C]PBR28 uptake was associated with loss of neuronal integrity and grey matter atrophy.


2013 ◽  
Vol 22 (5) ◽  
pp. 527-534 ◽  
Author(s):  
Mareen Weber ◽  
Christian A. Webb ◽  
Sophie R. Deldonno ◽  
Maia Kipman ◽  
Zachary J. Schwab ◽  
...  

2017 ◽  
Vol 306 ◽  
pp. 68-75 ◽  
Author(s):  
Tetsuya Akaishi ◽  
Ichiro Nakashima ◽  
Shunji Mugikura ◽  
Masashi Aoki ◽  
Kazuo Fujihara

2016 ◽  
Vol 25 ◽  
pp. 112-120 ◽  
Author(s):  
Sébastien Celle ◽  
Chantal Delon-Martin ◽  
Frédéric Roche ◽  
Jean-Claude Barthélémy ◽  
Jean-Louis Pépin ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
pp. 205521732110707
Author(s):  
Satori Ajitomi ◽  
Juichi Fujimori ◽  
Ichiro Nakashima

Background Two-dimensional (2D) measures have been proposed as potential proxies for whole-brain volume in multiple sclerosis (MS). Objective To verify whether 2D measurements by routine MRI are useful in predicting brain volume or disability in MS. Methods In this cross-sectional analysis, eighty-five consecutive Japanese MS patients—relapsing-remitting MS (81%) and progressive MS (19%)—underwent 1.5 Tesla T1-weighted 3D MRI examinations to measure whole-brain and grey matter volume. 2D measurements, namely, third ventricle width, lateral ventricle width (LVW), brain width, bicaudate ratio, and corpus callosum index (CCI), were obtained from each scan. Correlations between 2D measurements and 3D measurements, the Expanded Disability Status Scale (EDSS), or processing speed were analysed. Results The third and lateral ventricle widths were well-correlated with the whole-brain volume ( p < 0.0001), grey matter volume ( p < 0.0001), and EDSS scores ( p = 0.0001, p = .0004, respectively).The least squares regression model revealed that 78% of the variation in whole-brain volume could be explained using five explanatory variables, namely, LVW, CCI, age, sex, and disease duration. By contrast, the partial correlation coefficient excluding the effect of age showed that the CCI was significantly correlated with the EDSS and processing speed ( p < 0.0001). Conclusion Ventricle width correlated well with brain volumes, while the CCI correlated well with age-independent (i.e. disease-induced) disability.


2019 ◽  
Vol 216 (5) ◽  
pp. 267-274 ◽  
Author(s):  
Shu Liu ◽  
Ang Li ◽  
Yong Liu ◽  
Hao Yan ◽  
Meng Wang ◽  
...  

BackgroundSchizophrenia is a complex mental disorder with high heritability and polygenic inheritance. Multimodal neuroimaging studies have also indicated that abnormalities of brain structure and function are a plausible neurobiological characterisation of schizophrenia. However, the polygenic effects of schizophrenia on these imaging endophenotypes have not yet been fully elucidated.AimsTo investigate the effects of polygenic risk for schizophrenia on the brain grey matter volume and functional connectivity, which are disrupted in schizophrenia.MethodGenomic and neuroimaging data from a large sample of Han Chinese patients with schizophrenia (N = 509) and healthy controls (N = 502) were included in this study. We examined grey matter volume and functional connectivity via structural and functional magnetic resonance imaging, respectively. Using the data from a recent meta-analysis of a genome-wide association study that comprised a large number of Chinese people, we calculated a polygenic risk score (PGRS) for each participant.ResultsThe imaging genetic analysis revealed that the individual PGRS showed a significantly negative correlation with the hippocampal grey matter volume and hippocampus–medial prefrontal cortex functional connectivity, both of which were lower in the people with schizophrenia than in the controls. We also found that the observed neuroimaging measures showed weak but similar changes in unaffected first-degree relatives of patients with schizophrenia.ConclusionsThese findings suggested that genetically influenced brain grey matter volume and functional connectivity may provide important clues for understanding the pathological mechanisms of schizophrenia and for the early diagnosis of schizophrenia.


2020 ◽  
Vol 33 (1) ◽  
pp. e100057 ◽  
Author(s):  
Hui Li ◽  
Bin Zhang ◽  
Qiang Hu ◽  
Lanlan Zhang ◽  
Yi Jin ◽  
...  

BackgroundPalpitation is a common complaint in generalised anxiety disorder (GAD). Brain imaging studies have investigated the neural mechanism of heartbeat perception in healthy volunteers. This study explored the neuroanatomical differences of altered heartbeat perception in patients with GAD using structural MRI.AimsBased on the strong somatic-interoceptive symptoms in GAD, we explored the regional structural brain abnormalities involved in heartbeat perception in patients with GAD.MethodsThis study was applied to the a priori regions using neuroanatomical theories of heartbeat perception, including the insula, anterior cingulate cortex, supplementary motor area and prefrontal cortex. A total of 19 patients with GAD and 19 healthy control subjects were enrolled. We used the FMRIB Software Library voxel-based morphometry software for estimating the grey matter volume of these regions of interest and analysed the correlation between heartbeat perception sensitivity and the volume of abnormal grey matter.ResultsPatients with GAD showed a significantly decreased volume of grey matter in their left medial prefrontal cortex, right orbital frontal cortex and anterior cingulate cortex. The grey matter volume of the left medial prefrontal cortex negatively correlated with heartbeat perception sensitivity in patients with GAD.ConclusionsIt should be the first study that shows heartbeat perception is associated with brain structure in GAD. Our findings suggest that the frontal region may play an important role in aberrant heartbeat perception processing in patients with GAD, and this may be an underlying mechanism resulting in the abnormal cardiovascular complaints in GAD. This is hypothesised as a ‘top-down’ deficiency, especially in the medial prefrontal cortex. This will provide the foundation for a more targeted region for neuromodulation intervention in the future.


Sign in / Sign up

Export Citation Format

Share Document