scholarly journals Altered heartbeat perception sensitivity associated with brain structural alterations in generalised anxiety disorder

2020 ◽  
Vol 33 (1) ◽  
pp. e100057 ◽  
Author(s):  
Hui Li ◽  
Bin Zhang ◽  
Qiang Hu ◽  
Lanlan Zhang ◽  
Yi Jin ◽  
...  

BackgroundPalpitation is a common complaint in generalised anxiety disorder (GAD). Brain imaging studies have investigated the neural mechanism of heartbeat perception in healthy volunteers. This study explored the neuroanatomical differences of altered heartbeat perception in patients with GAD using structural MRI.AimsBased on the strong somatic-interoceptive symptoms in GAD, we explored the regional structural brain abnormalities involved in heartbeat perception in patients with GAD.MethodsThis study was applied to the a priori regions using neuroanatomical theories of heartbeat perception, including the insula, anterior cingulate cortex, supplementary motor area and prefrontal cortex. A total of 19 patients with GAD and 19 healthy control subjects were enrolled. We used the FMRIB Software Library voxel-based morphometry software for estimating the grey matter volume of these regions of interest and analysed the correlation between heartbeat perception sensitivity and the volume of abnormal grey matter.ResultsPatients with GAD showed a significantly decreased volume of grey matter in their left medial prefrontal cortex, right orbital frontal cortex and anterior cingulate cortex. The grey matter volume of the left medial prefrontal cortex negatively correlated with heartbeat perception sensitivity in patients with GAD.ConclusionsIt should be the first study that shows heartbeat perception is associated with brain structure in GAD. Our findings suggest that the frontal region may play an important role in aberrant heartbeat perception processing in patients with GAD, and this may be an underlying mechanism resulting in the abnormal cardiovascular complaints in GAD. This is hypothesised as a ‘top-down’ deficiency, especially in the medial prefrontal cortex. This will provide the foundation for a more targeted region for neuromodulation intervention in the future.

2013 ◽  
Vol 22 (5) ◽  
pp. 527-534 ◽  
Author(s):  
Mareen Weber ◽  
Christian A. Webb ◽  
Sophie R. Deldonno ◽  
Maia Kipman ◽  
Zachary J. Schwab ◽  
...  

2019 ◽  
Vol 216 (5) ◽  
pp. 267-274 ◽  
Author(s):  
Shu Liu ◽  
Ang Li ◽  
Yong Liu ◽  
Hao Yan ◽  
Meng Wang ◽  
...  

BackgroundSchizophrenia is a complex mental disorder with high heritability and polygenic inheritance. Multimodal neuroimaging studies have also indicated that abnormalities of brain structure and function are a plausible neurobiological characterisation of schizophrenia. However, the polygenic effects of schizophrenia on these imaging endophenotypes have not yet been fully elucidated.AimsTo investigate the effects of polygenic risk for schizophrenia on the brain grey matter volume and functional connectivity, which are disrupted in schizophrenia.MethodGenomic and neuroimaging data from a large sample of Han Chinese patients with schizophrenia (N = 509) and healthy controls (N = 502) were included in this study. We examined grey matter volume and functional connectivity via structural and functional magnetic resonance imaging, respectively. Using the data from a recent meta-analysis of a genome-wide association study that comprised a large number of Chinese people, we calculated a polygenic risk score (PGRS) for each participant.ResultsThe imaging genetic analysis revealed that the individual PGRS showed a significantly negative correlation with the hippocampal grey matter volume and hippocampus–medial prefrontal cortex functional connectivity, both of which were lower in the people with schizophrenia than in the controls. We also found that the observed neuroimaging measures showed weak but similar changes in unaffected first-degree relatives of patients with schizophrenia.ConclusionsThese findings suggested that genetically influenced brain grey matter volume and functional connectivity may provide important clues for understanding the pathological mechanisms of schizophrenia and for the early diagnosis of schizophrenia.


2011 ◽  
Vol 26 (S2) ◽  
pp. 934-934
Author(s):  
C. Kraus ◽  
M. Savli ◽  
A. Hahn ◽  
P. Baldinger ◽  
A. Höflich ◽  
...  

IntroductionThe subgenual part of the anterior cingulate cortex (sgACC) has been frequently reported to be structurally and cytoarchitectually changed in major depressive disorder (MDD) and is also a promising target in deep brain stimulation in treatment-resistant MDD. Furthermore, substantial evidence demonstrates a high density of serotonin-1A (5-HT1A) receptors in the sgACC, a key area involved in emotional processing.ObjectivesHere, we investigated the relationship between the 5-HT1A receptor in the sgACC and changes in regional grey matter volume with voxel-based morphometry.MethodsPET ([carbonyl-11C]WAY-100635) was used to quantify 5-HT1A receptor binding (BPND) together with structural magnetic resonance images from 32 healthy subjects (mean 26.68 ± 5.1 years; 17 women). Regression analysis was performed in SPM8 (p < .001 uncorr.) using sgACC 5-HT1A BPND as regressor, controlling for sex, age and total grey matter volume (GMV).Results5-HT1A BPND in the sgACC was positively associated with regional GMV in the medial temporal gyri (T=4.37) and nucleus accumbens bilaterally (T = 4.19). Furthermore, sgACC 5-HT1A binding was negatively correlated with GMV within the inferior temporal gyri (T = 5.22) and putamen bilaterally (T = 5.12).ConclusionsOur findings demonstrate structural relationships between sgACC 5-HT1A receptor binding and grey matter volume in the ventral striatum as well as in temporal regions, which both exhibit close neuronal connections with the sgACC. Moreover, the GMV of the ventral striatum has been reported to be decreased in patients with MDD. Conclusively, our results underpin the role of serotonergic neuronal transmission in cytoarchitectural processes within regions involved in the modulation of mood.


2009 ◽  
Vol 194 (5) ◽  
pp. 426-433 ◽  
Author(s):  
Alex Fornito ◽  
Murat Yücel ◽  
Stephen J. Wood ◽  
Andreas Bechdolf ◽  
Simon Carter ◽  
...  

BackgroundThe anterior cingulate cortex is frequently implicated in the pathophysiology of bipolar disorder, but magnetic resonance imaging (MRI) studies have reported variable findings owing to a reliance on patient samples with chronic illness and to limited appreciation of the region's heterogeneity.AimsTo characterise anterior cingulate cortex abnormalities in patients with bipolar disorder experiencing their first episode of psychosis while accounting for regional anatomical variability.MethodGrey matter volume, surface area and cortical thickness were measured in six anterior cingulate cortex subregions per hemisphere using MRI scans acquired from 26 patients with bipolar I disorder experiencing first-episode psychosis and 26 healthy controls matched for age, gender and regional morphological variability.ResultsRelative to controls, male patients displayed increased thickness in the right subcallosal limbic anterior cingulate cortex. No significant differences were identified in females for grey matter volume or surface area measures. The findings were not attributable to medication effects.ConclusionsThese data suggest that first-episode psychosis in bipolar disorder is associated with a gender-specific, right-lateralised thickness increase in anterior cingulate cortex subregions known to play a role in regulating physiological stress responses.


2017 ◽  
Vol 27 (11) ◽  
pp. 1163-1171 ◽  
Author(s):  
Mirjam A. Rinne-Albers ◽  
J. Nienke Pannekoek ◽  
Marie-José van Hoof ◽  
Natasja D. van Lang ◽  
Francien Lamers-Winkelman ◽  
...  

2014 ◽  
Vol 204 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Emma Jane Rose ◽  
April Hargreaves ◽  
Derek Morris ◽  
Ciara Fahey ◽  
Daniela Tropea ◽  
...  

BackgroundA single nucleotide polymorphism (rs7914558) within the cyclin M2 (CNNM2) gene was recently identified as a common risk variant for schizophrenia. The mechanism by whichCNNM2confers risk is unknown.AimsTo determine the impact of the rs7914558 risk ‘A’ allele on measures of neurocognition, social cognition and brain structure.MethodPatients with schizophrenia (n= 400) and healthy controls (n= 160) completed measures of neuropsychological function and social cognition. Structural magnetic resonance imaging data were also acquired from an overlapping sample of Irish healthy controls (n= 159) and an independent sample of Italian patients (n= 82) and healthy controls (n= 39).ResultsNo effects of genotype on neuropsychological test performance were observed. However, a dosage effect of the risk allele was found for an index of social cognition (i.e. attributional style), such that risk status was associated with reduced self-serving bias across groups (GG>AG>AA, P<0.05). Using voxel-based morphometry to investigate neuroanatomical regions putatively supporting social cognition, risk carriers had relatively increased grey matter volume in the right temporal pole and right anterior cingulate cortex (Pcorrected<0.05) in the Irish healthy controls sample; neuroanatomical associations betweenCNNM2and grey matter volume in anterior cingulate cortex were also observed in the Italian schizophrenia and healthy controls samples.ConclusionsAlthough the biological role ofCNNM2in schizophrenia remains unknown, these data suggest that thisCNNM2risk variant rs7914558 may have an impact on neural systems relevant to social cognition. How such effects may mediate the relationship between genotype and disease risk remains to be established.


2018 ◽  
Vol 49 (3) ◽  
pp. 412-420 ◽  
Author(s):  
Lena Palaniyappan ◽  
Olha Hodgson ◽  
Vijender Balain ◽  
Sarina Iwabuchi ◽  
Penny Gowland ◽  
...  

AbstractBackgroundIn patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation.MethodsStructural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework.ResultsPatients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls.ConclusionRegional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional ‘hub’ regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.


2018 ◽  
Vol 38 (8) ◽  
pp. 1429-1435 ◽  
Author(s):  
Mark D. Russell ◽  
Thomas R. Barrick ◽  
Franklyn A. Howe ◽  
Nidhi Sofat

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Lotze ◽  
M. Domin ◽  
C. O. Schmidt ◽  
N. Hosten ◽  
H. J. Grabe ◽  
...  

Abstract Income and education are both elements of a person’s socioeconomic status, which is predictive of a broad range of life outcomes. The brain’s gray matter volume (GMV) is influenced by socioeconomic status and mediators related to an unhealthy life style. We here investigated two independent general population samples comprising 2838 participants (all investigated with the same MRI-scanner) with regard to the association of indicators of the socioeconomic status and gray matter volume. Voxel-based morphometry without prior hypotheses revealed that years of education were positively associated with GMV in the anterior cingulate cortex and net-equivalent income with gray matter volume in the hippocampus/amygdala region. Analyses of possible mediators (alcohol, cigarettes, body mass index (BMI), stress) revealed that the relationship between income and GMV in the hippocampus/amygdala region was partly mediated by self-reported stressors, and the association of years of education with GMV in the anterior cingulate cortex by BMI. These results corrected for whole brain effects (and therefore not restricted to certain brain areas) do now offer possibilities for more detailed hypotheses-driven approaches.


Sign in / Sign up

Export Citation Format

Share Document