scholarly journals Gelatinase activity imaged by activatable cell-penetrating peptides in cell-based and in vivo models of stroke

2016 ◽  
Vol 37 (1) ◽  
pp. 188-200 ◽  
Author(s):  
Shanyan Chen ◽  
Jiankun Cui ◽  
Tao Jiang ◽  
Emilia S Olson ◽  
Quan-Yu Cai ◽  
...  

Matrix metalloproteinases (MMPs), particularly gelatinases (MMP-2/-9), are involved in neurovascular impairment after stroke. Detection of gelatinase activity in vivo can provide insight into blood–brain barrier disruption, hemorrhage, and nerve cell injury or death. We applied gelatinase-activatable cell-penetrating peptides (ACPP) with a cleavable l-amino acid linker to examine gelatinase activity in primary neurons in culture and ischemic mouse brain in vivo. We found uptake of Cy5-conjugated ACPP (ACPP-Cy5) due to gelatinase activation both in cultured neurons exposed to n-methyl-d-aspartate and in mice after cerebral ischemia. Fluorescence intensity was significantly reduced when cells or mice were treated with MMP inhibitors or when a cleavage-resistant ACPP-Cy5 was substituted. We also applied an ACPP dendrimer (ACPPD) conjugated with multiple Cy5 and/or gadolinium moieties for fluorescence and magnetic resonance imaging (MRI) in intact animals. Fluorescence analysis showed that ACPPD was detected in sub-femtomole range in ischemic tissues. Moreover, MRI and inductively coupled plasma mass spectrometry revealed that ACPPD produced quantitative measures of gelatinase activity in the ischemic region. The resulting spatial pattern of gelatinase activity and neurodegeneration were very similar. We conclude that ACPPs are capable of tracing spatiotemporal gelatinase activity in vivo, and will therefore be useful in elucidating mechanisms of gelatinase-mediated neurodegeneration after stroke.

Nanomedicine ◽  
2019 ◽  
Vol 14 (23) ◽  
pp. 3089-3104 ◽  
Author(s):  
Roberto Gonzalez-Pizarro ◽  
Graziella Parrotta ◽  
Rodrigo Vera ◽  
Elena Sánchez-López ◽  
Ruth Galindo ◽  
...  

Aim: Development of fluorometholone-loaded PEG-PLGA nanoparticles (NPs) functionalized with cell-penetrating peptides (CPPs) for the treatment of ocular inflammatory disorders. Materials & methods: Synthesized polymers and peptides were used for elaboration of functionalized NPs, which were characterized physicochemically. Cytotoxicity and ability to modulate the expression of proinflammatory cytokines were evaluated in vitro using human corneal epithelial cells (HCE-2). NPs uptake was assayed in both in vitro and in vivo models. Results: NPs showed physicochemical characteristics suitable for ocular administration without evidence of cytotoxicity. TAT-NPs and G2-NPs were internalized and displayed anti-inflammatory activity in both HCE-2 cells and mouse eye. Conclusion: TAT-NPs and G2-NPs could be considered a novel strategy for the treatment of ocular inflammatory diseases of the anterior and posterior segment.


2008 ◽  
Vol 14 (24) ◽  
pp. 2415-2427 ◽  
Author(s):  
Veerle Kersemans ◽  
Ken Kersemans ◽  
Bart Cornelissen

2005 ◽  
Vol 390 (2) ◽  
pp. 407-418 ◽  
Author(s):  
Catherine de Coupade ◽  
Antonio Fittipaldi ◽  
Vanessa Chagnas ◽  
Matthieu Michel ◽  
Sophie Carlier ◽  
...  

Short peptide sequences that are able to transport molecules across the cell membrane have been developed as tools for intracellular delivery of therapeutic molecules. This work describes a novel family of cell-penetrating peptides named Vectocell® peptides [also termed DPVs (Diatos peptide vectors)]. These peptides, originating from human heparin binding proteins and/or anti-DNA antibodies, once conjugated to a therapeutic molecule, can deliver the molecule to either the cytoplasm or the nucleus of mammalian cells. Vectocell® peptides can drive intracellular delivery of molecules of varying molecular mass, including full-length active immunoglobulins, with efficiency often greater than that of the well-characterized cell-penetrating peptide Tat. The internalization of Vectocell® peptides has been demonstrated to occur in both adherent and suspension cell lines as well as in primary cells through an energy-dependent endocytosis process, involving cell-membrane lipid rafts. This endocytosis occurs after binding of the cell-penetrating peptides to extracellular heparan sulphate proteoglycans, except for one particular peptide (DPV1047) that partially originates from an anti-DNA antibody and is internalized in a caveolar independent manner. These new therapeutic tools are currently being developed for intracellular delivery of a number of active molecules and their potentiality for in vivo transduction investigated.


2015 ◽  
Author(s):  
◽  
Shanyan Chen

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Stroke ranks fourth among all causes of death, and acute ischemic stroke is the most common form. The neurovascular unit (NVU) describes a basic functional structure in the brain and is primarily composed of endothelial cells, pericytes, astrocytes, microglia and neurons. The dynamic structure of the NVU is highly regulated due to interactions between different cells and extracellular matrix (ECM) components. Proteolysis of the ECM by matrix metalloproteinases (MMPs), especially MMP-9, plays an important role in the pathophysiology of cerebral ischemia and administration of tissue plasminogen activator (tPA). The activation of gelatinases (MMP-2/9) is considered a key mechanism involved in the impairment of NVU. The overall goal of this research project is to examine the role of MMP-9 in the neurovascular impairment after ischemic stroke in mice. In this project, we implemented a new strategy using gelatinase-activatable cell-penetrating peptides (ACPPs) tagged with fluorescence and/or gadolinium-based contrast agents to investigate proteolysis of gelatinases as surrogate markers of neurovascular integrity. We presented evidence that the combination of a sensitive fluorescent chromatophore and MRI contrast enhancement agent can be used to monitor gelatinase activity and its distribution in cultured neurons as well as in mice after focal cerebral ischemia. Detection of the activity of gelatinases in vivo using ACPPs could provide insights into the underlying mechanism for gelatinase proteolysis that mediate ischemia-related neurovascular impairment. We also applied a two-dimensional (2D) gelatin zymography technique that combines isoelectric focusing (IEF) with zymographic electrophoresis. We demonstrated that the 2D zymography approach can improve separation of different isoforms of gelatinases in both in vitro and in vivo conditions. 2D zymography is an effective method to separate posttranslational modification isoforms of gelatinases and to identify modifications that regulate their enzymatic activity in acute brain injuries. In work that follows, we used a fibrin-rich blood clot to occlude the middle cerebral artery (MCA) in mice as a model to represent the critical thromboembolic features of ischemic stroke in humans. In this study, we evaluated effects of SB-3CT, a mechanism-based inhibitor selective for gelatinases. We demonstrated MMP-9 activation and neurovasculature impairment in this stroke model, and showed the ability of SB-3CT to inhibit MMP-9 activity in vivo, which in turn resulted in maintenance of laminin, antagonism of pericyte contraction and loss, preservation of laminin-positive pericytes and endothelial cells, and thus rescuing neurons from apoptosis and preventing intracerebral hemorrhage. We further demonstrated that SB-3CT/tPA combined treatment could attenuate MMP-9 -- mediated degradation of endothelial laminin, impairment of endothelial cells, and decrease of caveolae -- mediated transcytosis. Early inhibition of MMP-9 proteolysis by SB-3CT decreased brain damage, reduced BBB disruption, and prevented hemorrhagic transformation after delayed tPA treatment. Therefore usage of SB-3CT will be helpful in accessing combination therapy with tPA in ischemic stroke. Results from these studies indicate the important role of MMP-9 in cerebral ischemia and thus the need for further studies to explore the molecular mechanisms underlying its activation and regulation. Results further demonstrated that the combined use of MMP-9 inhibitor with tPA may extend tPA therapeutic window for mitigating stroke damage.


2020 ◽  
Vol 11 ◽  
pp. 101-123 ◽  
Author(s):  
Ivana Ruseska ◽  
Andreas Zimmer

In today’s modern era of medicine, macromolecular compounds such as proteins, peptides and nucleic acids are dethroning small molecules as leading therapeutics. Given their immense potential, they are highly sought after. However, their application is limited mostly due to their poor in vivo stability, limited cellular uptake and insufficient target specificity. Cell-penetrating peptides (CPPs) represent a major breakthrough for the transport of macromolecules. They have been shown to successfully deliver proteins, peptides, siRNAs and pDNA in different cell types. In general, CPPs are basic peptides with a positive charge at physiological pH. They are able to translocate membranes and gain entry to the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that influence the cellular uptake mechanism.


2020 ◽  
Vol 21 (5) ◽  
pp. 1856
Author(s):  
Qi Shuai ◽  
Yue Cai ◽  
Guangkuo Zhao ◽  
Xuanrong Sun

On account of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, amphiphilic block copolymer-based micelles have been widely utilized for chemotherapy drug delivery. In order to further improve the antitumor ability and to also reduce undesired side effects of drugs, cell-penetrating peptides have been used to functionalize the surface of polymer micelles endowed with the ability to target tumor tissues. Herein, we first synthesized functional polyethylene glycol-polylactic acid (PEG-PLA) tethered with maleimide at the PEG section of the block polymer, which was further conjugated with a specific peptide, the transactivating transcriptional activator (TAT), with an approved capacity of aiding translocation across the plasma membrane. Then, TAT-conjugated, paclitaxel-loaded nanoparticles were self-assembled into stable nanoparticles with a favorable size of 20 nm, and displayed a significantly increased cytotoxicity, due to their enhanced accumulation via peptide-mediated cellular association in human breast cancer cells (MCF-7) in vitro. But when further used in vivo, TAT-NP-PTX showed an acceleration of the drug’s plasma clearance rate compared with NP-PTX, and therefore weakened its antitumor activities in the mice model, because of its positive charge, its elimination by the endoplasmic reticulum system more quickly, and its targeting effect on normal cells leading towards being more toxic. So further modification of TAT-NP-PTX to shield TAT peptide’s positive charges may be a hot topic to overcome the present dilemma.


Sign in / Sign up

Export Citation Format

Share Document