scholarly journals Glycocalyx degradation leads to blood–brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats

2017 ◽  
Vol 38 (11) ◽  
pp. 1979-1992 ◽  
Author(s):  
Jiajia Zhu ◽  
Xing Li ◽  
Jia Yin ◽  
Yafang Hu ◽  
Yong Gu ◽  
...  

The role of glycocalyx in blood–brain barrier (BBB) integrity and brain damage is poorly understood. Our study aimed to investigate the impacts of endothelial glycocalyx on BBB function in a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Male Sprague-Dawley rats subjected to 8-min asphyxia CA/CPR. Compared to controls, glycocalyx was mildly injured by CA, severely disrupted by hyaluronidase (HAase) with CA, and mitigated by hydrocortisone (HC) with CA. More importantly, the disruption of glycocalyx caused by HAase treatment was associated with higher BBB permeability and aggravated brain edema at 24 h after return of spontaneous circulation, as well as lower survival rate and poorer neurologic outcome at seventh day. Reversely, less degradation of glycocalyx by HC treatment was accompanied by higher seven-day survival rate and better neurologic outcome. Mechanistically, HAase treatment further increased CA/CPR-induced activation of glia cells and expression of inflammatory factors, whereas HC decreased them in the brain cortex and hippocampus. Glycocalyx degradation results in BBB leakage, brain edema, and deteriorates neurologic outcome after asphyxia CA/CPR in rats. Preservation of glycocalyx by HC could improve neurologic outcome and reduce BBB permeability, apparently through reduced gene transcription-protein synthesis and inflammation.

2015 ◽  
Vol 35 (3) ◽  
pp. 494-500 ◽  
Author(s):  
Yingjie Geng ◽  
Eerdunmutu Li ◽  
Qier Mu ◽  
Yu Zhang ◽  
Xia Wei ◽  
...  

The effects of hydrogen sulfide (H2S) on blood—brain barrier (BBB) and brain edema after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) remain poorly understood. We investigated the effects of exogenous 80-p.p.m. H2S gas on BBB, brain water content, neurologic outcome, and survival rate after CA and CPR. Cardiopulmonary resuscitation followed CA induced in rats by ventricular fibrillation for 6 minutes. Results show that inhalation of 80-p.p.m. H2S significantly reduced the permeability of the BBB in both in the cortex and hippocampus at 24 hours after resuscitation. Hydrogen sulfide also lessened brain edema in the cortex and hippocampus, ameliorated neurologic outcome as evaluated by neurologic deficit score and tape removal test, and improved the 14-day survival rate. Hydrogen sulfide also attenuated CA and CPR-induced increases of matrix metalloproteinase-9 (MMP-9) activity and vascular endothelial growth factor (VEGF) expression, and increased the expression of angiogenin-1 (Ang-1). These results indicate that inhalation of 80-p.p.m. H2S immediately after CPR attenuated BBB permeability and brain edema, and improved neurologic outcome and 14-day survival of rats after CA. The therapeutic benefits of H2S could be associated with suppression of MMP-9 and VEGF expression and increased expression of Ang-1.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yilv Wan ◽  
Min Song ◽  
Xun Xie ◽  
Zhen Chen ◽  
Ziyun Gao ◽  
...  

Background. In patients with subarachnoid hemorrhage (SAH), the damage of the blood-brain barrier (BBB) can be life-threatening. Mesenchymal stem cells are widely used in clinical research due to their pleiotropic properties. This study is aimed at exploring the effect of BMSCs regulating astrocytes on the BBB after SAH. Methods. The SAH model was established by perforating the blood vessels. BMSCs were transfected with TSG-6 inhibitor plasmid and cocultured with astrocytes. Intravenous transplantation of BMSCs was utilized to treat SAH rats. We performed ELISA, neurological scoring, Evans blue staining, NO measurement, immunofluorescence, BBB permeability, Western blot, HE staining, Nissl staining, and immunohistochemistry to evaluate the effect of BMSCs on astrocytes and BBB. Results. SAH rats showed BBB injury, increased BBB permeability, and brain histological damage. BMSCs will secrete TSG-6 after being activated by TNF-α. Under the influence of TSG-6, the NF-κB and MAPK signaling pathways of astrocytes were inhibited. The expression of iNOS was reduced, while occludin, claudin 3, and ZO-1 expression was increased. The production of harmful substances NO and ONOO- decreased. The level of inflammatory factors decreased. The apoptosis of astrocytes was weakened. TSG-6 secreted by BMSCs can relieve inflammation caused by SAH injury. The increase in BBB permeability of SAH rats was further reduced and the risk of rebleeding was reduced. Conclusion. BMSCs can regulate the activation of astrocytes through secreting TSG-6 in vivo and in vitro to protect BBB.


2011 ◽  
Vol 114 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Tetsuhiro Higashida ◽  
Christian W. Kreipke ◽  
José A. Rafols ◽  
Changya Peng ◽  
Steven Schafer ◽  
...  

Object The present study investigated the role of hypoxia-inducible factor-1α (HIF-1α), aquaporin-4 (AQP-4), and matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) permeability alterations and brain edema formation in a rodent traumatic brain injury (TBI) model. Methods The brains of adult male Sprague-Dawley rats (400–425 g) were injured using the Marmarou closed-head force impact model. Anti–AQP-4 antibody, minocycline (an inhibitor of MMP-9), or 2-methoxyestradiol (2ME2, an inhibitor of HIF-1α), was administered intravenously 30 minutes after injury. The rats were killed 24 hours after injury and their brains were examined for protein expression, BBB permeability, and brain edema. Expression of HIF-1α, AQP-4, and MMP-9 as well as expression of the vascular basal lamina protein (laminin) and tight junction proteins (zona occludens-1 and occludin) was determined by Western blotting. Blood-brain barrier disruption was assessed by FITC-dextran extravasation, and brain edema was measured by the brain water content. Results Significant (p < 0.05) edema and BBB extravasations were observed following TBI induction. Compared with sham-operated controls, the injured animals were found to have significantly (p < 0.05) enhanced expression of HIF-1α, AQP-4, and MMP-9, in addition to reduced amounts (p < 0.05) of laminin and tight junction proteins. Edema was significantly (p < 0.01) decreased after inhibition of AQP-4, MMP-9, or HIF-1α. While BBB permeability was significantly (p < 0.01) ameliorated after inhibition of either HIF-1α or MMP-9, it was not affected following inhibition of AQP-4. Inhibition of MMP reversed the loss of laminin (p < 0.01). Finally, while inhibition of HIF-1α significantly (p < 0.05) suppressed the expression of AQP-4 and MMP-9, such inhibition significantly (p < 0.05) increased the expression of laminin and tight junction proteins. Conclusions The data support the notion that HIF-1α plays a role in brain edema formation and BBB disruption via a molecular pathway cascade involving AQP-4 and MMP-9. Pharmacological blockade of this pathway in patients with TBI may provide a novel therapeutic strategy.


Author(s):  
Ying Wang ◽  
Xinjie Liu ◽  
Qi Liu

Streptococcus pneumoniae meningitis is one of the most common disorders seen in clinical practice. It is believed that the brain tissue immune injury is caused by the expression of pattern-recognition receptors (PRR) which can further induce the release of other cytokines and inflammatory cascades. The aim of this study is to investigate the expression of nucleotide-binding oligomerization domain 2 (NOD2) and inflammatory factors in rat brain tissues infected with Streptococcus pneumoniae and its influence on the blood-brain barrier (BBB) permeability. Rats were given an intracranial injection of Streptococcus pneumoniae to construct the Streptococcus pneumoniae meningitis rat models. The expression change curves of NOD2 and inflammatory factors at different time points (0 h, 12 h, 24 h, 48 h, and 7 d) after Streptococcus pneumoniae were evaluated by enzyme-linked immunosorbent assay (ELISA). Western blotting analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were engaged to examine the expression of NOD2. Furthermore, the changing processes of pathological characteristics, nervous system score, cerebral oedema, and BBB permeability were observed. Our results showed that NOD2 expression began to increase in the 12 h after Streptococcus pneumoniae infection group, while the remaining inflammatory factors were not obviously increased. Meanwhile, the levels of NOD2, as well as inflammatory factors IL-1β, TNF-α, and IL-6 were markedly elevated in 24 h and 48 h infection groups, which were consistent with the increases in BBB permeability and BWC, and the positive expression of NOD2 in the infected rat brain tissues was observed using immunohistochemistry (IHC). This study suggests that NOD2 might be related to the activation of inflammation pathways and the damage to the blood-brain barrier. NOD2 and inflammatory factors have played vital roles in the pathogenesis of Streptococcus pneumoniae meningitis.


2018 ◽  
Vol 47 (3) ◽  
pp. 994-1006 ◽  
Author(s):  
Hangbing Li ◽  
Lin Zhu ◽  
Jingwei Feng ◽  
Xiaotong Hu ◽  
Chen Li ◽  
...  

Background/Aims: Hydrogen sulfide (H2S) can decrease blood-brain barrier (BBB) permeability after cardiac arrest (CA) and resuscitation; however, the underlying mechanisms are not understood clearly. Methods: We investigated the effects of inhalation of H2S on CA and resuscitation in a rat model of CA. We used Evans blue to detect the integrity of BBB and Western blot to assess the activation of protein kinase c (PKC) isozymes and the expression of Claudin-5, Occludin, and ZO-1. Neurological deficit scales and the 14-days survival rate were measured. Results: We determined that inhalation of 40 p.p.m or 80 p.p.m H2S significantly decreased brain water content and Evans blue leakage, ameliorated neurologic deficit scale and improved 14-days survival rate. H2S inhibited the activation of PKC-α, β I, β II and δ, impelled the activation of PKC-ε, and increased the expression of Claudin-5, Occludin and ZO-1. Conclusions: H2S improved the integrity of BBB, mitigated brain edema; improved neurological outcome and 14-days survival rate in rats after CA and resuscitation. The beneficial effects of H2S may be associated with inhibiting the activation of PKC-α, β I, β II and δ, promoting the activation of PKC-ε, and increasing the expression of Claudin-5, Occludin and ZO-1.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Huang ◽  
Junwen Li ◽  
Chao Feng ◽  
Xi Huang ◽  
Liping Wong ◽  
...  

White matter lesion (WML) is popular in the patients aged over 65. Brain edema and blood-brain barrier (BBB) dysfunction due to cerebral chronic hypoperfusion (CCH) contributed to WML. Preserving astrocyte polarity is vital for BBB integrity. In our experiment, CCH model is established by bilateral carotid arteries occlusion (2VO). Leukoaraiosis was verified by fiber density stain, and brain edema was evaluated using brain water content measuring. The expressions of agrin and aquaporin-4 (AQP4) were evaluated, as well as the integrity of BBB. Astrocyte polarity was assessed by visualizing the distribution of AQP4 on astrocyte end-feet membranes. The results showed that expression of AQP4 firstly increased and then decreased, as agrin expression decreased gradually. At 3 days after 2VO, AQP4 and agrin displayed the most opposite expression with the former increasing and the latter decreasing; at the same time, brain edema reached high point as well as BBB permeability, and astrocyte polarity was degeneration. In the later phase, brain edema and BBB permeability were getting recovered, but WML was getting more evident. In accordance with that, agrin and AQP4 expression decreased significantly with astrocyte polarity reducing. We speculated that agrin and AQP4 played key roles in development of WML by mediating BBB damage in CCH, and BBB dysfunction due to reduced astrocyte polarity is the starting point of WMH.


1994 ◽  
Vol 80 (5) ◽  
pp. 897-905 ◽  
Author(s):  
Warren D. Lo ◽  
Arlene Wolny ◽  
Carl Boesel

✓ The pattern of radiographic enhancement in cases of brain abscess has been extensively studied, but the magnitude of blood-brain barrier (BBB) damage that accompanies enhancement has not. The question of whether BBB permeability increases continuously as a cerebritis evolves into an abscess was studied. The tracers 3H-labeled aminoisobutyric acid and 14C-labeled butanol were used in a rat Staphylococcus aureus cerebritis model to measure simultaneously BBB permeability and blood flow. The rats were examined at 1, 2, 3, 5, or 7 days after inoculation, and tissue samples were collected from the cerebritis site and uninoculated regions. Permeability of the BBB in the cerebritis region increased to five times the normal values by 72 hours after inoculation, then reached a plateau. The plasma volume in the cerebritis region increased to six times greater than the normal value at 72 hours, then remained unchanged. Uninoculated brain in both ipsilateral and contralateral hemispheres showed no significant changes. Cerebral blood flow was not substantially altered at the inoculated or uninoculated sites. In this model, incidence of BBB damage rises rapidly, reaches a plateau, and does not continue to increase despite the ongoing evolution of a cerebritis into an abscess. The BBB damage is accompanied by an increase in the regional plasma volume, a novel finding that has not been previously reported in central nervous system inflammation. These results suggest that the vascular events contributing to brain edema formation become established early in the cerebritis phase and imply that control of the host's inflammatory response is important in the management of cerebritis-associated brain edema.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Wei He ◽  
Qin Lu ◽  
Prativa Sherchan ◽  
Lei Huang ◽  
Xin Hu ◽  
...  

Abstract Background Destruction of blood–brain barrier (BBB) ​​is one of the main mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Frizzled-7 is a key protein expressed on the surface of endothelial cells that controls vascular permeability through the Wnt-canonical pathway involving WNT1-inducible signaling pathway protein 1 (WISPI). This study aimed to investigate the role of Frizzled-7 signaling in BBB preservation after ICH in mice. Methods Adult CD1 mice were subjected to sham surgery or collagenase-induced ICH. Frizzled-7 activation or knockdown was performed by administration of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) by intracerebroventricular injection at 48 h before ICH induction. WISP1 activation or WISP1 knockdown was performed to evaluate the underlying signaling pathway. Post-ICH assessments included neurobehavior, brain edema, BBB permeability, hemoglobin level, western blot and immunofluorescence. Results The brain expressions of Frizzled-7 and WISP1 significantly increased post-ICH. Frizzled-7 was expressed in endothelial cells, astrocytes, and neurons after ICH. Activation of Frizzled-7 significantly improved neurological function, reduced brain water content and attenuated BBB permeability to large molecular weight substances after ICH. Whereas, knockdown of Frizzled-7 worsened neurological function and brain edema after ICH. Activation of Frizzled-7 significantly increased the expressions of Dvl, β-Catenin, WISP1, VE-Cadherin, Claudin-5, ZO-1 and reduced the expression of phospho-β-Catenin. WISP1 knockdown abolished the effects of Frizzled-7 activation on the expressions of VE-Cadherin, Claudin-5 and ZO-1 at 24 h after ICH. Conclusions Frizzled-7 activation potentially attenuated BBB permeability and improved neurological deficits after ICH through Dvl​​/β-Catenin/WISP1 pathway. Frizzled-7 may be a potential target for the development of ICH therapeutic drugs.


2019 ◽  
Vol 20 (3) ◽  
pp. 571 ◽  
Author(s):  
Shotaro Michinaga ◽  
Yutaka Koyama

The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.


Sign in / Sign up

Export Citation Format

Share Document