Evaluation of diagnostic accuracy of intracranial aneurysm detection using medical-grade versus commercial consumer-grade displays and different image reconstructions against the background of process optimization for telemedicine

2019 ◽  
Vol 61 (7) ◽  
pp. 936-944
Author(s):  
Timo Alexander Auer ◽  
Hanna Münzfeld ◽  
Helena Posch ◽  
Juliane Stöckel ◽  
Anna Tietze ◽  
...  

Background Process optimization in computed tomography (CT) and telemedicine. Purpose To compare image quality and objective diagnostic accuracy of medical-grade and consumer-grade digital displays/computer terminals for detection of intracranial aneurysms. Material and Methods Four radiologists with different levels of experience retrospectively read a total of 60 patients including 30 cases of proven therapy-naïve intracranial aneurysm detectable on a medical-grade grayscale calibrated display. They had 5 min per case reading the first 20 datasets using only axial slices, the next 20 patients using axial slices and multiplanar reconstructions (MPRs), and the last 20 patients using axial slices, MPRs, and maximum intensity projections (MIPs). Three months after the first reading session on a medical-grade display, they read all datasets again under the same standardized conditions but on a consumer-grade display. Diagnostic performance, subjective diagnostic confidence, and reading speed were analyzed and compared. Readers rated image quality on a five-point Likert scale. Results Diagnostic accuracy did not differ significantly with areas under the curve of 0.717–0.809 for all readers on both display devices. Sensitivity and specificity did not increase significantly when adding MPRs and/or MIPs. Reading speed was similar with both devices. There were no significant differences in subjective image quality scores, and overall inter-reader variability of all subjective parameters correlated positively between the two devices ( P <0.001–0.011). Conclusion Diagnostic accuracy and readers’ diagnostic confidence in detecting and ruling out intracranial aneurysm were similar on commercial-grade and medical-grade displays. Additional reconstructions did not increase sensitivity/specificity or reduce the time needed for diagnosis.

2017 ◽  
Vol 59 (1) ◽  
pp. 4-12 ◽  
Author(s):  
Ahmed E Othman ◽  
Malte Niklas Bongers ◽  
Dominik Zinsser ◽  
Christoph Schabel ◽  
Julian L Wichmann ◽  
...  

Background Patients with acute non-traumatic abdominal pain often undergo abdominal computed tomography (CT). However, abdominal CT is associated with high radiation exposure. Purpose To evaluate diagnostic performance of a reduced-dose 100 kVp CT protocol with advanced modeled iterative reconstruction as compared to a linearly blended 120 kVp protocol for assessment of acute, non-traumatic abdominal pain. Material and Methods Two radiologists assessed 100 kVp and linearly blended 120 kVp series of 112 consecutive patients with acute non-traumatic pain (onset < 48 h) regarding image quality, noise, and artifacts on a five-point Likert scale. Both radiologists assessed both series for abdominal pathologies and for diagnostic confidence. Both 100 kVp and linearly blended 120 kVp series were quantitatively evaluated regarding radiation dose and image noise. Comparative statistics and diagnostic accuracy was calculated using receiver operating curve (ROC) statistics, with final clinical diagnosis/clinical follow-up as reference standard. Results Image quality was high for both series without detectable significant differences ( P = 0.157). Image noise and artifacts were rated low for both series but significantly higher for 100 kVp ( P ≤ 0.021). Diagnostic accuracy was high for both series (120 kVp: area under the curve [AUC] = 0.950, sensitivity = 0.958, specificity = 0.941; 100 kVp: AUC ≥ 0.910, sensitivity ≥ 0.937, specificity = 0.882; P ≥ 0.516) with almost perfect inter-rater agreement (Kappa = 0.939). Diagnostic confidence was high for both dose levels without significant differences (100 kVp 5, range 4–5; 120 kVp 5, range 3–5; P = 0.134). The 100 kVp series yielded 26.1% lower radiation dose compared with the 120 kVp series (5.72 ± 2.23 mSv versus 7.75 ± 3.02 mSv, P < 0.001). Image noise was significantly higher in reduced-dose CT (13.3 ± 2.4 HU versus 10.6 ± 2.1 HU; P < 0.001). Conclusion Reduced-dose abdominal CT using 100 kVp yields excellent image quality and high diagnostic accuracy for the assessment of acute non-traumatic abdominal pain.


Author(s):  
Vitali Koch ◽  
Ibrahim Yel ◽  
Leon D. Grünewald ◽  
Sebastian Beckers ◽  
Iris Burck ◽  
...  

Abstract Objectives To determine the diagnostic accuracy of dual-energy CT (DECT) virtual noncalcium (VNCa) reconstructions for assessing thoracic disk herniation compared to standard grayscale CT. Methods In this retrospective study, 87 patients (1131 intervertebral disks; mean age, 66 years; 47 women) who underwent third-generation dual-source DECT and 3.0-T MRI within 3 weeks between November 2016 and April 2020 were included. Five blinded radiologists analyzed standard DECT and color-coded VNCa images after a time interval of 8 weeks for the presence and degree of thoracic disk herniation and spinal nerve root impingement. Consensus reading of independently evaluated MRI series served as the reference standard, assessed by two separate experienced readers. Additionally, image ratings were carried out by using 5-point Likert scales. Results MRI revealed a total of 133 herniated thoracic disks. Color-coded VNCa images yielded higher overall sensitivity (624/665 [94%; 95% CI, 0.89–0.96] vs 485/665 [73%; 95% CI, 0.67–0.80]), specificity (4775/4990 [96%; 95% CI, 0.90–0.98] vs 4066/4990 [82%; 95% CI, 0.79–0.84]), and accuracy (5399/5655 [96%; 95% CI, 0.93–0.98] vs 4551/5655 [81%; 95% CI, 0.74–0.86]) for the assessment of thoracic disk herniation compared to standard CT (all p < .001). Interrater agreement was excellent for VNCa and fair for standard CT (ϰ = 0.82 vs 0.37; p < .001). In addition, VNCa imaging achieved higher scores regarding diagnostic confidence, image quality, and noise compared to standard CT (all p < .001). Conclusions Color-coded VNCa imaging yielded substantially higher diagnostic accuracy and confidence for assessing thoracic disk herniation compared to standard CT. Key Points • Color-coded VNCa reconstructions derived from third-generation dual-source dual-energy CT yielded significantly higher diagnostic accuracy for the assessment of thoracic disk herniation and spinal nerve root impingement compared to standard grayscale CT. • VNCa imaging provided higher diagnostic confidence and image quality at lower noise levels compared to standard grayscale CT. • Color-coded VNCa images may potentially serve as a viable imaging alternative to MRI under circumstances where MRI is unavailable or contraindicated.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1072
Author(s):  
Moritz T. Winkelmann ◽  
Saif Afat ◽  
Sven S. Walter ◽  
Eva Stock ◽  
Vincent Schwarze ◽  
...  

The aim of this study was to investigate the effects of dose reduction on diagnostic accuracy and image quality of cervical computed tomography (CT) in patients with suspected cervical abscess. Forty-eight patients (mean age 45.5 years) received a CT for suspected cervical abscess. Low-dose CT (LDCT) datasets with 25%, 50%, and 75% of the original dose were generated with a realistic simulation. The image data were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) (strengths 3 and 5). A five-point Likert scale was used to assess subjective image quality and diagnostic confidence. The signal-to-noise ratio (SNR) of the sternocleidomastoid muscle and submandibular gland and the contrast-to-noise ratio (CNR) of the sternocleidomastoid muscle and submandibular glandular fat were calculated to assess the objective image quality. Diagnostic accuracy was calculated for LDCT using the original dose as the reference standard. The prevalence of cervical abscesses was high (72.9%) in the cohort; the mean effective dose for all 48 scans was 1.8 ± 0.8 mSv. Sternocleidomastoid and submandibular SNR and sternocleidomastoid muscle fat and submandibular gland fat CNR increased with higher doses and were significantly higher for ADMIRE compared to FBP, with the best results in ADMIRE 5 (all p < 0.001). Subjective image quality was highest for ADMIRE 5 at 75% and lowest for FBP at 25% of the original dose (p < 0.001). Diagnostic confidence was highest for ADMIRE 5 at 75% and lowest for FBP at 25% (p < 0.001). Patient-based diagnostic accuracy was high for all LDCT datasets, down to 25% for ADMIRE 3 and 5 (sensitivity: 100%; specificity: 100%) and lower for FBP at 25% dose reduction (sensitivity: 88.6–94.3%; specificity: 92.3–100%). The use of a modern dual-source CT of the third generation and iterative reconstruction allows a reduction in the radiation dose to 25% (0.5 mSv) of the original dose with the same diagnostic accuracy for the assessment of neck abscesses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jarl Åsbjørn Jakobsen ◽  
Carlo Cosimo Quattrocchi ◽  
Frank H. H. Müller ◽  
Olivier Outteryck ◽  
Andrés Alcázar ◽  
...  

Abstract Background The EU gadolinium-based contrast agents (GBCA) market has changed in recent years due to the European Medicines Agency decision to suspend the marketing authorisation of linear GBCA and the marketing authorisation of new generic macrocyclic GBCA. The study aims to understand the patterns of (GBCA) use, and to study the effectiveness and safety of GBCA in routine practice across Europe. Methods Prospective, cross-sectional, multicentre, observational study in patients undergoing contrast-enhanced magnetic resonance. Reported usage patterns included indication, referral and examination details. Assessment of effectiveness included changes in radiological diagnosis, diagnostic confidence and image quality. Safety data were collected by spontaneous patient adverse event (AE) reporting. Results 2118 patients were included from 8 centres across 5 European countries between December 2018 and November 2019. Clariscan, Dotarem (gadoteric acid), Gadovist (gadobutrol) and ProHance (gadoteridol) were utilised in 1513 (71.4%), 356 (16.8%), 237 (11.2%) and 12 (0.6%) patients, respectively. Most were performed in CNS-related indications (46.2%). Mean GBCA doses were 0.10 mmol/kg body weight, except for Gadovist (mean 0.12 mmol/kg). GBCA use increased confidence in diagnosis in 96.2% of examinations and resulted in a change in radiological diagnosis in 73.9% of patients. Image quality was considered excellent or good in 96.1% of patients and across all GBCA. Four patients reported AEs (0.19%), with only 1 (0.05%) considered serious. Conclusions This European study confirmed that GBCAs are used appropriately in Europe for a wide range of indications. The study demonstrated a significant increase in diagnostic confidence after GBCA use and confirmed the good safety profile of GBCAs, with comparable results for all agents used.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Andreas S. Brendlin ◽  
Moritz T. Winkelmann ◽  
Phuong Linh Do ◽  
Vincent Schwarze ◽  
Felix Peisen ◽  
...  

To evaluate the effect of radiation dose reduction on image quality and diagnostic confidence in contrast-enhanced whole-body computed tomography (WBCT) staging. We randomly selected March 2016 for retrospective inclusion of 18 consecutive patients (14 female, 60 ± 15 years) with clinically indicated WBCT staging on the same 3rd generation dual-source CT. Using low-dose simulations, we created data sets with 100, 80, 60, 40, and 20% of the original radiation dose. Each set was reconstructed using filtered back projection (FBP) and Advanced Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength 1–5, resulting in 540 datasets total. ADMIRE 2 was the reference standard for intraindividual comparison. The effective radiation dose was calculated using commercially available software. For comparison of objective image quality, noise assessments of subcutaneous adipose tissue regions were performed automatically using the software. Three radiologists blinded to the study evaluated image quality and diagnostic confidence independently on an equidistant 5-point Likert scale (1 = poor to 5 = excellent). At 100%, the effective radiation dose in our population was 13.3 ± 9.1 mSv. At 20% radiation dose, it was possible to obtain comparably low noise levels when using ADMIRE 5 (p = 1.000, r = 0.29). We identified ADMIRE 3 at 40% radiation dose (5.3 ± 3.6 mSv) as the lowest achievable radiation dose with image quality and diagnostic confidence equal to our reference standard (p = 1.000, r > 0.4). The inter-rater agreement for this result was almost perfect (ICC ≥ 0.958, 95% CI 0.909–0.983). On a 3rd generation scanner, it is feasible to maintain good subjective image quality, diagnostic confidence, and image noise in single-energy WBCT staging at dose levels as low as 40% of the original dose (5.3 ± 3.6 mSv), when using ADMIRE 3.


2021 ◽  
Vol 94 (1125) ◽  
pp. 20210430
Author(s):  
Puja Shahrouki ◽  
Kim-Lien Nguyen ◽  
John M. Moriarty ◽  
Adam N. Plotnik ◽  
Takegawa Yoshida ◽  
...  

Objectives: To assess the feasibility of a rapid, focused ferumoxytol-enhanced MR angiography (f-FEMRA) protocol in patients with claustrophobia. Methods: In this retrospective study, 13 patients with claustrophobia expressed reluctance to undergo conventional MR angiography, but agreed to a trial of up to 10 min in the scanner bore and underwent f-FEMRA. Thirteen matched control patients who underwent gadolinium-enhanced MR angiography (GEMRA) were identified for comparison of diagnostic image quality. For f-FEMRA, the time from localizer image acquisition to completion of the angiographic acquisition was measured. Two radiologists independently scored images on both f-FEMRA and GEMRA for arterial and venous image quality, motion artefact and diagnostic confidence using a 5-point scale, five being best. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the aorta and IVC were measured. The Wilcoxon rank-sum test, one-way ANOVA with Tukey correction and two-tailed t tests were utilized for statistical analyses. Results: All scans were diagnostic and assessed with high confidence (scores ≥ 4). Average scan time for f-FEMRA was 6.27 min (range 3.56 to 10.12 min), with no significant difference between f-FEMRA and GEMRA in diagnostic confidence (4.86 ± 0.24 vs 4.69 ± 0.25, p = 0.13), arterial image quality (4.62 ± 0.57 vs 4.65 ± 0.49, p = 0.78) and motion artefact score (4.58 ± 0.49 vs 4.58 ± 0.28, p > 0.99). f-FEMRA scored significantly better for venous image quality than GEMRA (4.62 ± 0.42 vs 4.19 ± 0.56, p = 0.04). CNR in the IVC was significantly higher for steady-state f-FEMRA than GEMRA regardless of the enhancement phase (p < 0.05). Conclusions: Comprehensive vascular MR imaging of the thorax, abdomen and pelvis can be completed in as little as 5 min within the magnet bore using f-FEMRA, facilitating acceptance by patients with claustrophobia and streamlining workflow. Advances in knowledge: A focused approach to vascular imaging with ferumoxytol can be performed in patients with claustrophobia, limiting time in the magnet bore to 10 min or less, while acquiring fully diagnostic images of the thorax, abdomen and pelvis.


2021 ◽  
pp. 20210138
Author(s):  
Fedil Andraws Yalda ◽  
Chrysoula Theodorakou ◽  
Rosalyn J Clarkson ◽  
Jonathan Davies ◽  
Lee Feinberg ◽  
...  

Objectives: The aim of this study was to determine a “low-dose protocol” which provides acceptable diagnostic accuracy for detection of root fractures in unrestored anterior maxillary teeth, using an ex vivo model. Methods: 48 maxillary anterior teeth, half with horizontal or oblique root fractures, were imaged using CBCT in an anthropomorphic model. Nine X-ray exposure combinations were used, including the manufacturer’s standard (“reference”) exposure and high-resolution settings (“HiRes”), by varying kV, exposure time, and rotation angle. Measurements of Dose Area Product (DAP) were recorded. Five dental radiologists assessed the scans for root fractures and judged image quality. Parameters of diagnostic accuracy were calculated, including area under the Receiver Operating Characteristic curve (Az). Objective measures of image quality were made at the same exposure combinations using an image quality phantom. Results: Although there was a significant linear relationship between DAP and mean Az, only the lowest DAP exposure combination had a mean Az significantly different to the reference exposure. There was no significant effect on other diagnostic accuracy parameters when using HiRes compared with the reference exposure. There was a significant positive relationship between DAP and contrast resolution. HiRes did not significantly improve contrast resolution and made a small improvement to spatial resolution. Conclusions: Scope existed for radiation dose reduction compared with the manufacturer’s guidance. There was no improvement in diagnostic accuracy using HiRes settings. A cautious recommendation for this CBCT machine is that it is possible to achieve a dose reduction of about 20% compared with the reference exposure parameters.


Sign in / Sign up

Export Citation Format

Share Document