scholarly journals Identification of key pathways regulated by a set of competitive long non-coding RNAs in oral squamous cell carcinoma

2019 ◽  
Vol 47 (4) ◽  
pp. 1758-1765 ◽  
Author(s):  
Zhifeng Yang ◽  
Zili Liu ◽  
Lingqiu Meng ◽  
Shuyan Ma

Objective The aim of this study was to identify important pathways regulated by a set of long non-coding RNAs (lncRNAs) in oral squamous cell carcinoma (OSCC). Methods A lncRNA-mediated competitive endogenous RNA network (LMCN) was constructed using information on microRNA (miRNA)–mRNA interactions and lncRNA–miRNA intersections from the E-GEOD-37991 transcription profiling data in the ArrayExpress database. A random walk with restart ranking algorithm was then applied to evaluate the influences of protein-coding genes regulated by competitive lncRNAs. Pathway enrichment scores were calculated based on the propagation scores of protein-coding genes. Finally, permutation tests were used to estimate the significance of the pathways. Results We obtained lncRNA–mRNA interactions based on miRNAs common to both miRNA–mRNA interactions and lncRNA–miRNA intersections, and used interactions with a z-score > 0.7 to construct a LMCN. Ten lncRNAs were identified as source nodes in the LMCN, and nine pathways with enrichment scores >0.8, including ‘Cell cycle’, ‘Endocytosis’, and ‘Pathways in cancer’, were significantly enriched by these source nodes. Conclusions Nine significant pathways regulated by a set of competitive lncRNAs were identified in OSCC, which may play important roles in the development of OSCC via the cell cycle and endocytosis.

2016 ◽  
Vol 12 (11) ◽  
pp. 3467-3477 ◽  
Author(s):  
Jin-Cheng Guo ◽  
Chun-Quan Li ◽  
Qiu-Yu Wang ◽  
Jian-Mei Zhao ◽  
Ji-Yu Ding ◽  
...  

Esophageal carcinoma is one of the most malignant gastrointestinal cancers worldwide, and has a high mortality rate.


2019 ◽  
Vol 19 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Ling Gao ◽  
Jianwei Dong ◽  
Nanyang Zhang ◽  
Zhanxian Le ◽  
Wenhao Ren ◽  
...  

Background:The Oral Squamous Cell Carcinoma (OSCC) is one of the most frequent cancer types. Failure of treatment of OSCC is potentially lethal because of local recurrence, regional lymph node metastasis, and distant metastasis. Chemotherapy plays a vital role through suppression of tumorigenesis. Cyclosporine A (CsA), an immunosuppressant drug, has been efficiently used in allograft organ transplant recipients to prevent rejection, and also has been used in a subset of patients with autoimmunity related disorders. The present study aims to investigate novel and effective chemotherapeutic drugs to overcome drug-resistance in the treatment of OSCC.Methods:Cells were incubated in the standard way. Cell viability was assayed using the MTT assay. Cell proliferation was determined using colony formation assay. The cell cycle assay was performed using flow cytometry. Apoptosis was assessed using fluorescence-activated cell sorting after stained by the Annexin V-fluorescein isothiocyanate (FITC). Cell migration and invasion were analyzed using wound healing assay and tranwell. The effect of COX-2, c-Myc, MMP-9, MMP-2, and NFATc1 protein expression was determined using Western blot analysis while NFATc1 mRNA expression was determined by RT-PCR.Results:In vitro studies indicated that CsA inhibited partial OSCC growth by inducing cell cycle arrest, apoptosis, and the migration and invasion of OSCC cells. We also demonstrated that CsA could inhibit the expression of NFATc1 and its downstream genes COX-2, c-Myc, MMP-9, and MMP-2 in OSCC cells. Furthermore, we analyzed the expression of NFATc1 in head and neck cancer through the Oncomine database. The data was consistent with the experimental findings.Conclusion:The present study initially demonstrated that CsA could inhibit the progression of OSCC cells and can mediate the signal molecules of NFATc1 signaling pathway, which has strong relationship with cancer development. That explains us CsA has potential to explore the possibilities as a novel chemotherapeutic drug for the treatment of OSCC.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5944
Author(s):  
Jianfei Tang ◽  
Xiaodan Fang ◽  
Juan Chen ◽  
Haixia Zhang ◽  
Zhangui Tang

Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.


Tumor Biology ◽  
2015 ◽  
Vol 36 (12) ◽  
pp. 9717-9722 ◽  
Author(s):  
Marina Gonçalves Diniz ◽  
Jeane de Fatima Correia Silva ◽  
Fabricio Tinôco Alvim de Souza ◽  
Núbia Braga Pereira ◽  
Carolina Cavaliéri Gomes ◽  
...  

2019 ◽  
Vol 27 (1) ◽  
pp. 95-103
Author(s):  
Mario Pérez-Sayáns ◽  
Cintia M. Chamorro-Petronacci ◽  
Alejandro I. Lorenzo-Pouso ◽  
José M. Suárez Peñaranda ◽  
José López-López ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document