Effects of rainfall change on water erosion processes in terrestrial ecosystems: a review

2009 ◽  
Vol 33 (3) ◽  
pp. 307-318 ◽  
Author(s):  
Wei Wei ◽  
Liding Chen ◽  
Bojie Fu

Water erosion is the most destructive erosion type worldwide, causing serious land degradation and environmental deterioration. Against a background of climate change and accelerated human activities, changes in natural rainfall regimes have taken place and will be expected to become more pronounced in future decades. Long-term shifts may challenge the existing cultivation systems worldwide and eventually alter the spatiotemporal patterns of land use and topography. Meanwhile, specific features of soil crusting/sealing, plant litter and its decomposition, and antecedent soil moisture content (ASMC) will accompany rainfall variability. All these changes will increase pressures on soil erosion and hydrological processes, making accurate erosion prediction and control more difficult. An improved knowledge and understanding of this issue, therefore, is essential for dealing with the forthcoming challenges regarding soil and water conservation practices. In this paper, the characteristics of changes in natural rainfall, its role on terrestrial ecosystems, the challenges, and its effect on surface water erosion dynamics are elaborated and discussed. The major priorities for future research are also highlighted, and it is hoped that this will promote a better understanding of water erosion processes and related hydrological issues.

2010 ◽  
Vol 14 (5) ◽  
pp. 1-16 ◽  
Author(s):  
Nazzareno Diodato ◽  
Gianni Bellocchi

Abstract Earth ecosystems are not static, and they respond to environmental changes, particularly climatic and anthropogenic. Precipitation varying in its extremeness, with shifts to greater or lesser intensity of individual storms and/or to change in the length and frequency of wet and dry periods, can adversely affect both urban and rural ecosystems. Here, the authors review long-term precipitation records of the central Mediterranean area and employ a Web geographical information system (GIS)-based analytical approach to compare current rainfall impact with historical data on different spatial and temporal scales. Autumn (September–November) was recognized as the most hazardous season that marks the evidence of a changing climate, with a shift toward more intense rainfalls in recent times. In the first decade of the third millennium, areas of peninsular and insular Italy have been especially affected by extreme rains. A focus was put on the island of Sicily, where extraordinary rain events occurred in September 2009, discussed in the context of upcoming trends and climate histories. An improved knowledge and understanding of the scale at which changes on extremes occur is essential for dealing with the forthcoming challenges regarding soil and water conservation practices. The characteristics of changes in natural rainfall, its role on terrestrial ecosystems, and its effect on surface water erosion dynamics are discussed. It is argued that understanding these issues are major priorities for future research to promote a better understanding of the Earth interaction with water resources and related hydrological issues.


2020 ◽  
Author(s):  
Haiyan Fang

Abstract. China, among other countries, suffers severe soil loss. Water erosion studies in China have been conducted since 1922, and great achievements have since been obtained. Promoting water erosion research in China and globally requires a systematic review of water erosion studies in China. This paper reviews the history, major achievements of water erosion research in China as well as its influencing factors, water erosion processes, changing mechanisms, sediment source identification, global changes, and water erosion impacts on water pollution and crop yield, and research needs in future water erosion study. Threshold slope lengths and water erosion gradients must be considered in hydrologic/erosion models to accurately estimate water erosion. Sedimentation information has been well-mined using chronological tracers and rainfall characteristics in China, which help offset the lack of monitored data in understudied regions. Physical water erosion models that have been well developed in China however should be programmed, promoted, and continuously updated to promote global accessibility. Tracers are used to estimate water erosion, and the efficiency of elemental selection and result confirmation is significant when fingerprinting methods are used to identify sediment sources. Climate change and land use models should be coupled with water erosion models to predict global change impacts on water erosion. In future water erosion research, extreme rainstorm impact on water erosion, water erosion impact on crop yield, smart soil and water conservation, and ecological service-oriented water erosion in China should be evaluated in depth. This review is intended to present water erosion research over approximately 100 years in China to provide future directions and highlight the need for ongoing water erosion research in China and other countries.


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

<p><strong>Straw mulch impact on soil properties and initial soil erosion processes in the maize field</strong></p><p>Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic</p><p>University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia</p><p>(*correspondence to Ivan Dugan: [email protected])</p><p>Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha<sup>-1</sup> under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays L.) field in Blagorodovac, Croatia (45°33’N; 17°01’E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha<sup>-1</sup>), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h<sup>-1</sup>, for 30 min, over 0.785 m<sup>2</sup> plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p < 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p > 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha<sup>-1</sup>, when extrapolated, reached as high as 5.07 t ha<sup>-1 </sup>in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.</p><p><strong>Key words: straw mulch, </strong>rainfall simulation, soil water erosion</p><p><strong>Acknowledgment</strong></p><p>This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).</p><p><strong>Literature</strong></p><p>Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.</p><p>Kisic, I., Bogunovic, I., Birkás, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.</p>


2017 ◽  
Vol 10 (10) ◽  
pp. 3821-3859 ◽  
Author(s):  
Ronny Lauerwald ◽  
Pierre Regnier ◽  
Marta Camino-Serrano ◽  
Bertrand Guenet ◽  
Matthieu Guimberteau ◽  
...  

Abstract. Lateral transfer of carbon (C) from terrestrial ecosystems into the inland water network is an important component of the global C cycle, which sustains a large aquatic CO2 evasion flux fuelled by the decomposition of allochthonous C inputs. Globally, estimates of the total C exports through the terrestrial–aquatic interface range from 1.5 to 2.7 Pg C yr−1 (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009), i.e. of the order of 2–5 % of the terrestrial NPP. Earth system models (ESMs) of the climate system ignore these lateral transfers of C, and thus likely overestimate the terrestrial C sink. In this study, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems), the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin, the world's largest river system with regard to discharge and one of the most productive ecosystems in the world. With ORCHILEAK, we are able to reproduce observed terrestrial and aquatic fluxes of DOC and CO2 in the Amazon basin, both in terms of mean values and seasonality. In addition, we are able to resolve the spatio-temporal variability in C fluxes along the canopy–soil–water continuum at high resolution (1°, daily) and to quantify the different terrestrial contributions to the aquatic C fluxes. We simulate that more than two-thirds of the Amazon's fluvial DOC export are contributed by the decomposition of submerged litter. Throughfall DOC fluxes from canopy to ground are about as high as the total DOC inputs to inland waters. The latter, however, are mainly sustained by litter decomposition. Decomposition of DOC and submerged plant litter contributes slightly more than half of the CO2 evasion from the water surface, while the remainder is contributed by soil respiration. Total CO2 evasion from the water surface equals about 5 % of the terrestrial NPP. Our results highlight that ORCHILEAK is well suited to simulate carbon transfers along the terrestrial–aquatic continuum of tropical forests. It also opens the perspective that provided parameterization, calibration and validation is performed for other biomes, the new model branch could improve the quantification of the global terrestrial C sink and help better constrain carbon cycle–climate feedbacks in future projections.


2015 ◽  
Vol 58 (6) ◽  
pp. 906-914 ◽  
Author(s):  
XiangHua Wu ◽  
ShengJie Niu ◽  
DeZhen Jin ◽  
HaiYan Sun

Geoderma ◽  
2017 ◽  
Vol 294 ◽  
pp. 63-69 ◽  
Author(s):  
Shoucai Wei ◽  
Xiaoping Zhang ◽  
Neil B. McLaughlin ◽  
Xuewen Chen ◽  
Shuxia Jia ◽  
...  

Author(s):  
Volodymyr Haskevych

The article presents the results of the study of Male Polissia podzolic chernozems profile degradation. The causes and consequences of this dangerous natural and man-made phenomenon resulting in changes in the habitus of soils, losses of soil mass and humus, deterioration of general physical properties and structural and aggregate composition, decrease in soil fertility and agriculture unprofitability on the slopes have been analysed. In the study of the profile degradation of podzolic chernozems, the following methods have been used: comparative-geographical, comparative-profile, soil-catena, analytical, and statistical. Field studies were conducted after the vegetation period. According to the study results, the thickness of the profile of weakly eroded podzolic chernozems, in comparison with non-eroded types, decreased by 17.0–35.5% as compared to the standard, which corresponds to satisfactory and pre-crisis condition, in medium eroded soils - by 32.2–63.4%, the degree of degradation is estimated as pre-crisis, crisis and catastrophic. In the highly eroded types, the thickness of the soil layer decreased by 47.8–74.9%, which indicates a high and very high (crisis) level of profile degradation. Erosion soil loss compared to the standard in weakly eroded podzolic chernozems is 1245.0-3744.6 t/ha, in medium eroded soil – 6762.4-8321.0 t/ha, and in highly-eroded soil – 8874.0-11595.0 t/ha. It has been established that chernozems as a result of water erosion from one hectare of weakly eroded podzolic, on average 39.47–118.70 tons of humus was eroded, 214.36-237.98 tons was eroded from medium eroded ones, and 240.49-267.84 tons from highly eroded soils. The average annual loss of humus is from 0.23-0.68 t/ha in weakly eroded types to 1.37-1.53 t/ha in highly eroded podzolic chernozems. Erosion processes result in deterioration of physical properties of soils. The use of dense and low-humus plumage horizons for plowing causes compaction of soils and deterioration of structure. Minimization of podzolic chernozem profile degradation in Male Polissia is possible provided that the system of anti-erosion measures, especially the conservation of highly eroded soils, the introduction of soil protection methods for soil cultivation, optimization of the structure of crop areas, ban on cultivated crops on slopes more than 3° steep, consolidation of small areas in larger arrays are applied. It is also necessary to introduce a system of basic and crisis monitoring over the condition of eroded soils. Key words: Male Polissia, podzolic chernozems, profile degradation, water erosion, humus, soil conservation.


2021 ◽  
Vol 14 (1) ◽  
pp. 332
Author(s):  
Marcelo Divino Ribeiro Pereira ◽  
João Batista Pereira Cabral

A aplicação de modelos matemáticos na análise da perda de solo em bacias hidrográficas ganhou atenção, nos anos de 1960 e 1970, a partir da análise integrada da paisagem. Nesse contexto, a Equação Universal de Perda de Solo (EUPS) se destaca como um dos modelos mais utilizados mundialmente no conhecimento dos processos erosivos e no planejamento ambiental. Diante disso, este estudo tem por objetivo estimar as perdas de solos nas bacias hidrográficas dos córregos Macacão e Mutum, localizadas no município de Palmas (TO). Os resultados demonstram que as áreas estudadas sofreram com um alto poder de erosividade (R) ao longo dos anos 1995 a 2019, com valores entre 12,188 a 12,319 t/ha MJ-1 mm-1. Quanto ao solo, o Neossolo Litólico Distrófico (RLD) apresenta o maior valor de erodibilidade (K), 0,049 t/ha MJ-1 mm-1.No que tange ao fator topográfico (LS), cerca de 80% das áreas das bacias mostram valores de LS considerados baixos, situados entre 0,029 a 1,86, e 1,86 a 4,30. Já para o fator relacionado ao uso e manejo do solo e às práticas conservacionistas (CP), as áreas mais suscetíveis ao processo erosional diz respeito às classes de pastagem e queimadas. Desta forma, observa-se que as classes de erosão hídrica nas bacias são consideradas moderada, grave e muito grave pelo estudo da Food and Agriculture Organization (FAO) de 1984, ainda que represente somente 19% da área da bacia do Macacão e 24% da bacia do Córrego Mutum.  Loss of soil in the high course of hydrographic basins of ribeirões Taquaruçu Grande and Taquaruçuzinho, Palmas (TO) A B S T R A C TThe application of mathematical models in the analysis of soil loss in watersheds gained attention in the 1960s and 1970s from the integrated analysis of the landscape. In this context, the Universal Soil Loss Equation (EUPS) stood out as one of the most used models worldwide in the knowledge of erosion processes and in environmental planning. Therefore, this study aims to estimate soil losses in the hydrographic basins of the Macacão and Mutum streams, located in the municipality of Palmas (TO). The results demonstrate that the studied areas suffered from a high power of erosivity (R) over the years 1995 to 2019, with values between 12.188 to 12.319 t/ha MJ-1 mm-1. As for the soil, the Neosol Litolic Dystrophic (RLD) has the highest erodibility value (K), 0.049 t/ha MJ-1 mm-1. Regarding the topographic factor (LS), about 80% of the basin areas show LS values considered low, situated between 0.029 to 1.86, and 1.86 to 4.30. As for the factor related to the use and management of soil and conservation practices (CP), the areas most susceptible to the erosion process concern the grazing and burning classes. Thus, it is observed that the classes of water erosion in the basins are considered moderate, severe and very severe by the Food and Agriculture Organization (FAO) study of 1984, although it represents only 19% of the area of the Macacão basin and 24% of the Mutum Stream basin.Keywords: Water erosion. Hydrographic basin. USLE. 


1996 ◽  
Vol 11 (2-3) ◽  
pp. 52-57 ◽  
Author(s):  
R.I. Papendick

AbstractThe Northwest Wheat Region is a contiguous belt of 3.3 million ha in Idaho, Oregon and Washington. Its climate varies from subhumid (<650 mm annual precipitation) to semiarid (<350 mm), with more than 60% of the annual precipitation occurring during the winter. Winter wheat yields range from a high of 8 t/ha in the wetter zones to a low of 1.5 t/ha in the drier zones. Winter wheat is grown in rotation with spring cereals and pulses where annual precipitation exceeds 450 mm; winter wheat-fallow prevails where annual precipitation is less than 330 mm. Tillage practices are designed to maximize infiltration and retention of water through soil surface and crop residue management. Because of the combination of winter precipitation, steep topography, and winter wheat cropping, much of the region is subject to a severe water erosion hazard, accentuated by freeze-thaw cycles that increase surface runoff and weaken the soil structure. Wind erosion is a major problem in the drier zones, where cover is less and soils are higher in sand. Residue management, primarily through reduced tillage and no-till systems, is the first defense against both wind and water erosion, but yields often are higher with conventional intensive ti llage. Factors that limit yields with conservation farming include weed and disease problems and th e lack of suitable tillage and seeding equipment. Conservation strategies must shift from relying on traditional tillage methods to development of complete no-till systems. Spring cropping as a replacement for winter wheat also needs to be investigated. In some cases, tillage for water conservation must be made compatible with tillage for erosion control.


Author(s):  
Tarig El Gamri ◽  
Amir B. Saeed ◽  
Abdalla K. Abdalla

Seasonal streams (wadis) are of vital importance in dry and semidry countries including Sudan. Depending on the rainfall variability of the country, the annual discharge of such wadis was estimated to range from 3 to 7 km3 per annum. In the present study two wadi-discharge prediction methodologies were used to predict the discharge of Khor (wadi) Abu Fargha. The first methodology depends on the El Nino Southern Oscillation (ENSO) event which was divided into six distinct stages. The discharge during each stage was compared to previously estimated rainfall in the dry zone of the Sudan during the concurrent stage. The methodology was found to illustrate about 83% of the discharge behaviour of Khor Abu Fargha. This high prediction skill is attributed to the fact that the wadi is located in an area that is influenced by the ENSO event and to the availability of the discharge data for consecutive 34 years. The use of global sea surface temperatures (SSTs) in rainfall seasonal forecast studies was initiated during the 1990s through the development of empirical-statistical models. Using such methodology the models predicting Abu Fargha discharges were found to excel those for some meteorological stations and the dry zone of the Sudan as well. This is attributed to the fact that wadi discharges represent the whole catchment area whereas rainfall data represent only the rain gauge readings. The models using May global SSTs achieved better predictability in Abu Fargha discharges the thing which was found to be consistent with the results obtained in previous studies by Kassala meteorological station which is located in the vicinity of the wadi. The chapter illustrates the use of the wadi prediction information in forecasting the available storage of the aquifers and concluded that combining the different information, realistic management of surface and ground water resources can be achieved. The study recommended the use of water conservation techniques and integrated dryland management approaches.


Sign in / Sign up

Export Citation Format

Share Document