Landforms and ground ice as evidence of the source of H2O in permafrost

1989 ◽  
Vol 13 (3) ◽  
pp. 367-390 ◽  
Author(s):  
Stuart A. Harris

Selected landforms and the ice in permafrost may be used as indicators of the direction of moisture input into perennially frozen ground. Accumulation of ice from meteoric sources from above may be the most widespread process, being dominant in the palsas, peat plateaus, and near-slope rock glaciers studied so far. It is also the main source of ice accumulation in permafrost. Pingos and seasonal frost mounds are the result of injection of ground water from below. The resulting ice content usually exceeds 90% by volume and some massive icy beds in Arctic Canada may also form in this way. Glacial ice is also proven as a source for some massive icy beds and may represent an Arctic form of ice stagnation. Segregation of ice by water moving to the freezing plane is very important in active layer processes and the initial formation of peat plateaus and palsas, but is probably of secondary importance thereafter. More work is needed to confirm these relationships and to prove the origin of near-glacier rock glaciers. However, if these relationships prove reliable, then the landforms can be used as indicators of potential sources of ice so that foundation designs can be modified to minimize heaving problems.

Author(s):  
Dmitry Kuznetsov ◽  
Dmitry Kuznetsov ◽  
Anatoliy Kamalov ◽  
Anatoliy Kamalov ◽  
Nataliya Belova ◽  
...  

The dynamics of thermoabrasion coasts on loose sediments under permafrost conditions are highly variable due to several factors: length of the dynamic period of the year, mechanic composition of the frozen ground and its ice content, hydrometeorological conditions, and human impact. Multiannual monitoring of the coastal zone was carried out by Lab. Geoecology of the North (Moscow State University) at the 22 km long Kharasavey deposit site, Western Coast of Yamal Peninsula (Kara Sea). The methods include direct measurements and observations (repeated topographic survey of shore transects from 1981 to 2012) along with remote sensing data analysis (images from 1964 to 2011). This allowed producing detailed characteristics of coastal dynamics. At the site, thermoabrasion coasts occupy the most part, and accumulative coasts are present in the north. Data on natural relief forming factors and ground composition are included in the detailed geomorphologic map of the site. Shore retreat rate shows correlation to amounts of wind-wave energy and to specific wind directions. Human impact on the coast includes dredging at the port channel, mining of sand, driving motor vehicles, and deposition of construction debris. Relations between shore retreat rate and aforementioned factors were studied, including dependencies on ice content, and shore segmentation was carried out. This allows for coastal dynamics forecasts in the region.


1989 ◽  
Vol 111 (4) ◽  
pp. 258-263
Author(s):  
D. Stelzer ◽  
O. B. Andersland

Friction pile settlement in frozen ground is tyically predicted on the basis of a creep equation relating shear stresses at the soil/pile interface to pile displacement rates. Creep parameters are used to characterize soil type, soil/ice structure, temperature, and loading conditions. Experimental tests involving model steel piles embedded in frozen sand provided data showing that change in a given test variable can alter the numerical value for some of the creep parameters. The test variables included static, incremental, and dynamic loading; pile surface roughness; soil ice content; and sand particle size. Changes observed included the apparent effect on creep rate when a small dynamic load was superimposed on the static load. A tabulation of observed creep parameter changes is included.


2006 ◽  
Vol 33 (6) ◽  
pp. 719-725 ◽  
Author(s):  
Branko Ladanyi

Owing to climate warming trends, there has been an increasing interest in recent years in the accelerating creep of rock glaciers and frozen slopes. In the field of glaciology, the creep of glaciers has been extensively studied, observed, and analyzed for more than 100 years. Many valuable and detailed theoretical models have been proposed through the years for simulating the creep behavior of glaciers. This synthesis paper has no intention of proposing another one. Its purpose is only to supply to these models a potential geotechnical background, borrowed from the connected fields of frozen ground mechanics, rock mechanics, and the mechanics of mixtures. In particular, this paper attempts to extend some known models of mechanical behavior of unfrozen soil and rock masses to masses containing ice and to apply these models to large-scale creep of ice–rock mixtures and ice–rock interface problems under variable temperature and stress conditions.Key words: ice, rock, mixture, rock joints, slope stability, creep, temperature.


1965 ◽  
Vol 5 (42) ◽  
pp. 849-856 ◽  
Author(s):  
Samuel I. Outcalt ◽  
James B. Benedict

AbstractTwo types of rock glacier occur in the Colorado Front Range. Rock glaciers on the floors of modern cirques closely resemble the tongues of small valley glaciers. Because they contain cores of banded glacial ice and grade up-valley into lateral moraines, rock glaciers of this type are believed to represent the debris-covered tongues of former glaciers. Most consist of two or more superimposed lobes, bounded by longitudinal furrows, and resulting from independent ice advances. Despite their compound nature, the complexes now appear to be moving down-slope as single units. Two generations of “cirque-floor” rock glaciers, both tentatively dated as being of post-Pleistocene age, occur in the Front Range.Rock glaciers of an entirely different character occur beneath steep valley walls, where they are supplied with debris by avalanche couloirs. Interstitial ice, responsible for the movement of “valley-wall” rock glaciers, probably results from the metamorphism of snow buried beneath rock-fall debris or supplied by winter avalanching.


2020 ◽  
Author(s):  
Christian Halla ◽  
Jan Henrik Blöthe ◽  
Carla Tapia Baldis ◽  
Dario Trombotto ◽  
Christin Hilbich ◽  
...  

Abstract. The quantification of volumetric ice and water contents in active rock glaciers is necessary to estimate their role as water stores and contributors to runoff in dry mountain catchments. In the semi-arid to arid Andes of Argentina, active rock glaciers potentially constitute important water reservoirs due to their widespread distribution. Here however, water storage capacities and their interannual changes have so far escaped quantification in detailed field studies. Volumetric ice and water contents were quantified using a petrophysical four-phase model (4PM) based on complementary electrical resistivities (ERT) and seismic refraction tomographies (SRT) in different positions of Dos Lenguas rock glacier in the Upper Agua Negra basin, Argentina. We derived vertical and horizontal surface changes of the Dos Lenguas rock glacier, for the periods 2016–17 and 2017–18 using drone-derived digital elevation models (DEM). Interannual water storage changes of −36 mm yr−1 and +27 mm yr−1 derived from DEMs of Difference (DoD) for the periods 2016–17 and 2017–18, respectively, indicate that significant amounts of annual precipitation rates can be stored in and released from the active rock glacier. Heterogeneous ice and water contents show ice-rich permafrost and supra-, intra- and sub-permafrost aquifers in the subsurface. Active layer and ice-rich permafrost control traps and pathways of shallow ground water, and thus regulate interannual storage changes and water releases from the active rock glacier in the dry mountain catchment. The ice content of 1.7–2.0 × 109 kg in the active Dos Lenguas rock glacier represents an important long-term ice reservoir, just like other ground ice deposits in the vicinity, if compared to surface ice that covers less than 3 % of the high mountain catchment.


1981 ◽  
Vol 27 (97) ◽  
pp. 506-510 ◽  
Author(s):  
William J. Wayne

AbstractIn order to flow with the gradients observed (10° to 15°) rock glaciers cannot be simply ice-cemented rock debris, but probably contain masses or lenses of debris-free ice. The nature and origin of the ice in rock glaciers that are in no way connected to ice glaciers has not been adequately explained. Rock glaciers and talus above them are permeable. Water from snow-melt and rain flows through the lower part of the debris on top of the bedrock floor. In the headward part of a rock glacier, where the total thickness is not great, if this groundwater flow is able to maintain water pressure against the base of an aggrading permafrost, segregation of ice lenses should take place. Ice segregation on a large scale would produce lenses of clear ice of sufficient size to permit the streams or lobes of rock debris to flow with gradients comparable to those of glaciers. It would also account for the substantial loss in volume that takes place when a rock glacier stabilizes and collapses.


2020 ◽  
Author(s):  
remi valois ◽  
Nicole Schafer ◽  
Giulia De Pasquale ◽  
Gonzalo Navarro ◽  
Shelley MacDonell

<p>Rock glaciers play an important hydrological role in the semiarid Andes (SA; 27º-35ºS). They cover about three times the area of uncovered glaciers and they are an important contribution to streamflow when water is needed most, especially during dry years and in the late summer months. Their characteristics such as their extension in depth and their ice content is poorly known. Here, we present a case study of one active rock glacier and periglacial inactive geoform in Estero Derecho (~30˚S), in the upper Elqui River catchment, Chile. Three geophysical methods (ground-penetrating radar and electrical resistivity and seismic refraction tomography) were combined to detect the presence of ice and understand the internal structure of the landform. The results suggest that the combination of electrical resistivity and seismic velocity provide relevant information on ice presence and their geometry. Radargrams shows diffraction linked to boulders presence but some information regarding electromagnetic velocity could be extracted. These results strongly suggest that such landforms contain ice, are therefore important to include in future inventories and should be considered when evaluating the hydrological importance of a particular region.</p><p> </p>


2021 ◽  
Author(s):  
Yan Hu ◽  
Stephan Harrison ◽  
Lin Liu ◽  
Joanne Laura Wood

Abstract. Rock glaciers contain significant amount of ground ice and serve as important freshwater resources as mountain glaciers melt in response to climate warming. However, current knowledge about ice content in rock glaciers has been acquired mainly from in situ investigations in limited study areas, which hinders a comprehensive understanding of ice storage in rock glaciers situated in remote mountains and over local or regional scales. In this study, we develop an empirical rheological model to infer ice content of rock glaciers using readily available input data, including rock glacier planar shape, surface slope angle, active layer thickness, and surface creep rate. We apply the model to infer the ice content of five rock glaciers in Khumbu and Lhotse Valleys, north-eastern Nepal. The inferred volumetric ice fraction ranges from 57.5 % to 92 %, with an average value between 71 % to 75.3 %. The total water volume equivalent in the study area lies between 10.61 and 16.54 million m3. Considering previous mapping results and extrapolating from our findings to the entire Nepalese Himalaya, the total amount of water stored in rock glaciers ranges from 8.97 to 13.98 billion m3, equivalent to a ratio of 1 : 17 between the rock glacier and glacier reservoirs. Due to the accessibility of the input parameters of the model developed in this study, it is promising to apply the approach to permafrost regions where previous information about ice content of rock glaciers is lacking.


Sign in / Sign up

Export Citation Format

Share Document