Ankle–foot orthosis alignment affects running mechanics in individuals with lower limb injuries

2019 ◽  
Vol 43 (3) ◽  
pp. 316-324
Author(s):  
Kelly A Schmidtbauer ◽  
E Russell Esposito ◽  
Jason M Wilken

Background: Individuals with severe lower extremity injuries often require ankle–foot orthoses to return to normal activities. Ankle–foot orthoses alignment is a key consideration during the clinical fitting process and may be particularly important during dynamic activities such as running. Objective: To investigate how 3° changes in sagittal plane ankle–foot orthoses alignment affect running mechanics. Study design: Controlled laboratory study. Methods: Twelve participants with unilateral lower limb injury ran overground and lower extremity running mechanics were assessed. Participants wore their passive-dynamic ankle–foot orthoses in three alignments: clinically fit neutral, 3° plantarflexed from clinically fit neutral, and 3° dorsiflexed from clinically fit neutral. Results: The 3° changes in sagittal alignment significantly influenced ankle mechanics during running. The plantarflexed alignment significantly decreased the peak ankle plantarflexor moment, peak knee extensor moment, and peak ankle and knee power absorption and generation compared to more dorsiflexed alignments. Alignment also altered footstrike angle, with dorsiflexed alignments associated with a more dorsiflexed footstrike pattern and plantarflexed alignments toward a more plantarflexed footstrike pattern. However, alignment did not influence loading rate. Conclusion: Small changes in ankle–foot orthoses alignment significantly altered running mechanics, including footstrike angle, and knee extensor moments. Understanding how ankle–foot orthoses design parameters affect running mechanics may aid the development of evidence-based prescription guidelines and improve function for ankle–foot orthoses users who perform high-impact activities. Clinical relevance Understanding how ankle–foot orthoses alignment impacts biomechanics should be a consideration when fitting passive-dynamic devices for higher impact activities, such as running. Individual running styles, including footstrike patterns, may be affected by small changes in alignment.

2013 ◽  
Vol 48 (3) ◽  
pp. 314-325 ◽  
Author(s):  
Jennifer Sims ◽  
Nicole Cosby ◽  
Ethan N. Saliba ◽  
Jay Hertel ◽  
Susan A. Saliba

Context: Therapeutic exercise programs that incorporate real-time feedback have been reported to enhance outcomes in patients with lower extremity joint injuries. The Wii Fit has been purported to improve balance, strength, flexibility, and fitness. Objective: To determine the effects of Wii Fit rehabilitation on postural control and self-reported function in patients with a history of lower limb injury. Design: Single-blinded, randomized controlled trial. Setting: Laboratory. Patients or Other Participants: Twenty-eight physically active participants with a history of lower limb injuries were randomly assigned to 1 of 3 groups (9 Wii Fit, 10 traditional, 9 control). Intervention(s): Intervention groups performed supervised rehabilitation 3 d/wk for a total of 12 sessions. Main Outcome Measure(s): Time to boundary (TTB) and the Star Excursion Balance Test (SEBT) were conducted at baseline, 2 weeks, and 4 weeks. Self-reported function was measured at baseline and 4-week follow-up. Between-groups differences were compared using repeated-measures multivariate analysis of variance. Results: With the eyes open, both intervention groups improved (P < .05) in the mean and the SD of the TTB anterior-posterior minima. In the eyes-closed condition, a time main effect (P < .05) for absolute TTB medial-lateral minima was observed. A time main effect was also noted in the posteromedial and posterolateral reach directions of the SEBT. When the scores for each group were pooled, improvement (P < .05) in self-reported function was demonstrated at 4-week follow-up. Conclusions: Rehabilitation using the Wii Fit and traditional exercises improved static postural control in patients with a history of lower extremity injury.


Author(s):  
Jennifer L. Serres ◽  
Dan V. Jones ◽  
Rabih E. Tannous ◽  
Nathan Dau ◽  
Cynthia A. Bir

Improvised Explosive Devices (IED) and landmines present a significant threat to mounted troops currently serving in Iraq and Afghanistan. As a result of these threats, a substantial number of lower limb injuries are sustained by service members. Due to this reality, a critical factor in military vehicle design is the mitigation of lower limb trauma. Past studies have shown that the standard Hybrid III and THOR-LX are not biofidelic in military axial loading conditions (up to 12 m/s). Both of these surrogates over predict axial forces compared to Post Mortem Human Specimens (PMHS) [1]. As a result, a new surrogate was developed, Mil-LX (Military Lower Extremity), that matches the PMHS response for axial loading of the lower leg up to 12 m/s [2,3]. While injury mitigation techniques, such as energy absorbing mats, foot rests, and isolation floors, have been effective in reducing lower extremity injuries in live fire test events, there are several variants of each of these methods. Additionally, it has also been suggested that the positioning of the lower limbs may affect the load sustained by these extremities [4].


2020 ◽  
Vol 10 (1) ◽  
pp. 7-14
Author(s):  
Mostafa Zarei ◽  
◽  
Kamran Johari ◽  
Rahim Bagherian ◽  
◽  
...  

Purpose: Taekwondo is a martial art and contact sport in which the athletes’ goal is to strike the opponent with maximal force. This fact exposes taekwondo practitioners to the permanent risk of injuries. Therefore, the current prospective study aimed to investigate the internal risk factors of lower extremity injuries in the adolescent male taekwondo players. Methods: In total, 60 adolescent taekwondo players of Iran Premier League voluntarily participated in this research. Before league commencement, navicular drop, Q angle, knee hyperextension angle, the dorsiflexion/plantarflexion range of motion, hamstring flexibility, and their dynamic balance were measured. Then, the injuries of these taekwondo players were recorded during the study time. Results: The injury incidence rate was 7.9 per 1000 hours of exposure (95% confidence interval, 5.33-10.40). The logistic regression analysis data indicated a significant relationship between the Q angle and injuries incidence rate (odds ratio=1.33, P=0.031). The taekwondo players whose Q angles were >14.5 degrees were 1.33 times more prone to lower limb injury. However, no significant relationship was observed between the other risk factors of the study cases and injuries incidence.  Conclusion: Regarding the research findings, the Q angle could predict lower limb injuries in the studied taekwondo players. Therefore, it is suggested that this index be considered in the preparticipation evaluation process and preventive strategies. 


2018 ◽  
Vol 164 (5) ◽  
pp. 347-351 ◽  
Author(s):  
Daniel R Bonanno ◽  
S E Munteanu ◽  
G S Murley ◽  
K B Landorf ◽  
H B Menz

IntroductionThis study aimed to identify risk factors associated with the development of common lower limb injuries during initial defence training in naval recruits who were enrolled in a randomised trial.MethodsThree-hundred and six naval recruits were randomly allocated flat insoles (n=153) or foot orthoses (n=153) while undertaking 11 weeks of initial training. Participant characteristics (including anthropometrics, general health, physical activity, fitness and foot characteristics) were collected at the baseline assessment and injuries were documented prospectively. Injury was defined as the combined incidence of participants with medial tibial stress syndrome, patellofemoral pain, Achilles tendinopathy and plantar fasciitis/plantar heel pain throughout the 11 weeks of training. A discriminant function analysis was used to explore the ability of baseline measures to predict injury.ResultsOverall, 67 (21.9%) participants developed an injury. Discriminant function analysis revealed that participants who sustained an injury were slightly younger (mean 21.4±SD 4.1 vs 22.5±5.0 years) and were less likely to be allocated to the foot orthosis group (40% vs 53%) compared with those who remained uninjured. The accuracy of these baseline variables to predict injury was moderate (78.1%).ConclusionsLower limb injury was not accurately predicted from health questionnaires, fitness results and clinical assessments in naval recruits undertaking initial defence training. However, although not reaching statistical significance, the use of foot orthoses may be protective against common lower limb injuries.Trial registration numberACTRN12615000024549; Post-results.


2018 ◽  
Vol 43 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Ingrid Skaaret ◽  
Harald Steen ◽  
Terje Terjesen ◽  
Inger Holm

Background: Different types of ankle-foot orthoses are commonly used following lower limb surgery in children with bilateral spastic cerebral palsy. After three-dimensional gait analysis 1 year postoperatively, many children are recommended continued use of ankle-foot orthoses. Objectives: Our aims were to quantify the impact of ankle-foot orthoses on gait 1 year postoperatively and evaluate predictors for clinically important improvement. Study design: Prospective cohort study. Methods: A total of 34 ambulating children with bilateral cerebral palsy, with mean age 11 years (range 6–17), comprising 12 girls and 22 boys, were measured with three-dimensional gait analysis preoperatively (barefoot) and 1 year postoperatively (barefoot and with ankle-foot orthoses). Outcome was evaluated using gait profile score, key kinematic, kinetic and temporal–spatial variables in paired sample comparisons. Logistic regression was used to evaluate predictors for clinically important improvement with orthoses (⩾1.6° change in gait profile score). Results: Walking barefoot 1 year postoperatively, major improvements were seen in gait profile score and key variables. With ankle-foot orthoses, there were significantly improved step length and velocity, additional moderate reduction/improvement in gait profile score and knee moments and decreased stance ankle dorsiflexion compared to barefoot. Children using ground reaction ankle-foot orthoses ( n = 14) decreased stance knee flexion from 13.9° walking barefoot to 8.2° with orthoses. High gait profile score and more gait dysfunction preoperatively were significant predictors of clinically important improvement walking with orthoses. Conclusion: The results indicate improved gait function walking with ankle-foot orthoses versus barefoot 1 year after lower limb surgery. Stronger impact of ankle-foot orthoses was found in children with more pronounced gait dysfunction preoperatively. Clinical relevance The 1-year postoperative three-dimensional gait analysis is a useful method to assess treatment outcome after lower limb surgery in children with bilateral cerebral palsy and could also guide clinicians whether further treatment with ankle-foot orthoses is indicated, using clinically important differences as thresholds to evaluate their impact on gait.


2012 ◽  
Vol 5 (3) ◽  
pp. 171-179 ◽  
Author(s):  
Marc Degelean ◽  
Ludo De Borre ◽  
Patrick Salvia ◽  
Karine Pelc ◽  
Eric Kerckhofs ◽  
...  

2013 ◽  
Vol 38 (2) ◽  
pp. 104-113 ◽  
Author(s):  
Jan Andrysek ◽  
Susan Klejman ◽  
John Kooy

Background: Kinetic data provide important information about the mobility performance of individuals with lower limb impairments and their assistive devices; however, there is limited understanding of this in real-life environments. Objective: To evaluate the effect of real-life irregular surfaces on forces and moments in knee–ankle–foot orthoses. Methods: In this case series study, a load cell was used to measure the forces and moments at the knee joint of knee–ankle–foot orthoses of individuals with unilateral muscle weakness as a result of poliomyelitis while walking on different ground surfaces and at different speeds. Results: Significantly higher shear forces and external peak knee flexion moments were found when walking on irregular surfaces. In individual cases, certain irregular ground conditions elicited large increases in peak flexion moments (>50%) when compared to walking on smooth level ground. Forces and moments were significantly higher at faster walking speeds. Conclusions: Higher external peak knee flexion moments during the stance phase suggest that greater demands for support and stability are placed on individuals and their assistive devices when negotiating real-life ground surfaces. Clinical relevance This study demonstrates that walking on irregular surfaces alters the loads placed on knee–ankle–foot orthoses and that the requirements for knee stabilization increase. This has important clinical implications on the design, prescription, and use of such devices given the structural and functional demands placed on them.


2015 ◽  
Vol 11 (3) ◽  
pp. 183-190 ◽  
Author(s):  
P.J. Taylor ◽  
H. Vincent ◽  
S. Atkins ◽  
J. Sinclair

Commercially available foot orthoses are advocated for the treatment of chronic running injuries, such as patellofemoral pain, yet the mechanisms behind their effects are not well understood. This study aimed to examine the limb and joint stiffness characteristics when running with and without orthotics. Twelve recreational runners ran at 4.0 m/s. Limb stiffness was obtained using a spring-mass model of running by dividing the peak vertical ground reaction force (GRF) by the amount of limb compression. Knee and ankle joint stiffness’s were calculated by dividing the peak sagittal plane joint moment by the joint angular excursion. Differences between orthotic and non-orthotic running conditions were contrasted using paired samples t-tests. The results indicate that both peak knee extensor moment (orthotic = 2.74±0.57 and no-orthotic = 3.12±0.62 Nm/kg) and knee stiffness (orthotic = 5.56±1.08 and no-orthotic = 6.47±1.40 Nm/kg rad) were significantly larger when running without orthotics. This study may give further insight into the mechanical effects of commercially available foot orthoses. The current investigation provides some evidence to suggest that orthoses may be able to improve patellofemoral pathologies in recreational runners although further investigation is required.


2020 ◽  
pp. 030936462097140
Author(s):  
Elizabeth Russell Esposito ◽  
Mitchell D Ruble ◽  
Andrea J Ikeda ◽  
Jason M Wilken

Background: Maintaining an optimal rolling of the foot over the ground is thought to increase the stability and efficiency of pathologic gait. Ankle-foot orthoses are often prescribed to improve gait mechanics in individuals with lower extremity injuries; however, their design may compromise how the foot rolls over the ground. Objectives: The aim of this study was to investigate the effects of the sagittal plane ankle-foot orthosis alignment on roll-over shape and center of pressure velocity in individuals with lower limb reconstructions. Study design: Randomized cross-over study with a control group comparison. Methods: In total, 12 individuals with lower limb reconstruction who used a custom carbon ankle-foot orthosis and 12 uninjured controls underwent gait analysis. Ankle-foot orthosis users were tested in their clinically-provided ankle-foot orthosis alignment, with an alignment that was 3° more plantarflexed, and with an alignment that was 3° more dorsiflexed. Components of roll-over shape and center of pressure velocity were calculated from heel strike on the ankle-foot orthosis limb to contralateral heel strike. Results: Roll-over shape radius was not affected by 3° changes to alignment and was not significantly different from controls. Aligning the ankle-foot orthosis in more dorsiflexion than clinically provided resulted in a smaller peak center of pressure velocity that occurred later in stance. Conclusion: Individuals using custom carbon ankle-foot orthoses can accommodate 3° alterations in the dorsiflexion or plantarflexion alignment.


Author(s):  
Costin D. Untaroiu ◽  
Neng Yue ◽  
Jaeho Shin

Although not life-threatening, lower limb injuries are the most frequent injury of moderate severity (AIS 2), sustained in a vehicle crash (Pattimore et al., 1991). To better understand the injury mechanisms, several lower extremity (LEX) finite element (FE) models were developed to investigate traffic accidents involving occupants in vehicles (Yang et al., 2006). The main limitations of existing lower limb FE models are due to their geometries, the modeling approaches used to represent their components, and limited test data used for the model validation.


Sign in / Sign up

Export Citation Format

Share Document