Extreme load estimation of the wind turbine tower during power production

2019 ◽  
pp. 0309524X1987276
Author(s):  
Atsushi Yamaguchi ◽  
Prasanti Widyasih Sarli ◽  
Takeshi Ishihara

Wind turbines have to be designed against extreme load during power production with the recurrence period of 50 years. This extreme load is usually calculated through statistical extrapolation. However, large uncertainties exist in the estimation of the extreme load. This study aims to reduce these uncertainties in the statistical extrapolation by using systematic simulations. First, a new criterion is proposed for the data sets to be used for the statistical extrapolation and the resulting uncertainty satisfies the requirement in the standard for prediction of wind load. Then, a new extrapolation factor for load extrapolation is proposed and the predicted maximum tower bending moments at all the heights show favorable agreement with measurement. Finally, empirical formulae are proposed to estimate the expected value of the maximum tower bending moment and the predicted values show good agreement with the numerical simulations.

Author(s):  
Masahide Katsuo ◽  
Toshiyuki Sawa ◽  
Yuki Kikuchi

This study deals with the stress analysis and the estimation of sealing performance of the pipe flange connections with an adhesive under an internal pressure and an external bending moment are analyzed by using the 3-dimensional elastic finite element method (FEM). The experiment of the leakage test of the connections with an adhesive was carried out by applying the above loads to the connections. From the FEM analysis, the following results were obtained; (1) when an internal pressure is applied to the flange connections, the compressive stress at the interface between a flange and an adhesive increases proportionally from the inner side of the interface to outside, and (2) when an internal pressure and a bending moment apply to the flange connections, the stress distribution at the half part of the interface increases as the external bending moments increase and also Young’s modulus of the adhesive increases. From the experiments, the following results were obtained: (1) sealing performance of the pipe flange connections with an adhesive under an internal pressure and an external bending moment increases as the flange thickness and an initial clamping force of bolts increases and (2) the sealing performances were not found between the connections with an adhesive and that with a gasket combining an adhesive. Furthermore, the numerical results are in fairly good agreement with the experimental results.


Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Riichi Morimoto ◽  
Takashi Kobayashi

In designing of pipe flange connections with gaskets, it is important to examine the mechanical characteristics of the connections subjected to external bending moments due to earthquake such as the changes in hub stress, axial bolt forces and the contact gasket stress distribution which governs the sealing performance. One of the authors developed the PTFE blended gaskets and the authors examined the mechanical characteristics of the connections with the PTFE blended gaskets under internal pressure. However, no research was done to examine the mechanical characteristics of the connections with the newly developed PTFE blended gasket subjected to external bending moment due to earthquake. The objectives of the present study are to examine the mechanical characteristics of the connection with PTFE blended gasket subjected to external bending moment and internal pressure and to discuss the difference in the load order to the connections between the internal pressure and the external bending moments. The changes in the hub stress, the axial bolt force and the contact gasket stress distribution of the connection are analyzed using FEM. Using the obtained the gasket stress distribution and the fundamental data between the gasket stress and the leak rate for a smaller test gasket, the leak rate of the connection with the gasket is predicted under external bending moment and internal pressure. In the FEM calculations, the effects of the nominal diameter of pipe flanges on the mechanical characteristics are shown. In the experiments, ASME class 300 4 inch flange connection with 2m pipes at both sides is used and the test gasket is chosen as No.GF300 made by Nippon Valqua Industries, ltd. Four point bending moment is applied to the connection. The FEM results of the hub stress and the axial bolt forces are in a fairly good agreement with the experimental results. In addition, the FEM results of the leak rate are fairly coincided with the measured results.


2000 ◽  
Author(s):  
Toshiyuki Sawa ◽  
Tsuneshi Morohoshi ◽  
Akihiro Shimizu

Abstract In designing bolted joints, it is important to know the contact stress distribution which governs the clamping effect or the sealing performance and to estimate the load factor (the ratio of an increment in axial bolt force to an external load) from bolt design standpoint. The clamping force by bolts and the external bending moment are axi-asymmetrical loads and not many investigations have seen reported which treat axi-asymmetrical. In this paper, the clamping effect, and the load factor for the case of solid round bars with circular flanges, subjected to external bending moments, are analyzed as an axi-asymmetrical problem using the three-dimensional theory of elasticity. Experiments were carried out concerning the contact stress distribution, and the load factor for the external bending moment (a relationship between an increment in axial bolt force, and external bending moment). The analytical results were in fairly good agreement with the experimental ones.


2004 ◽  
Author(s):  
Masahide Katsuo ◽  
Toshiyuki Sawa

The interface stress distributions between the coupling collar, the adhesive and the pipes of the joint subjected to an internal pressure, a temperature change and bending moments are analyzed by using the elastic finite element method (FEM). The experiment of the rupture test of the joints manufactured by pipes made of structural steel (S45C, JIS) and epoxide adhesive was carried out by applying the above loads to the joints. From the numerical calculations, the following results were obtained: (1) the stress distributes uniformly at the interface except near the edges, (2) the stress becomes singular at the edges of the interfaces and (3) the stress distribution at a half part of the interface increase as the external bending moments increase and also Young’s modulus of the adhesive increases. From the experiments, the following results were obtained: (1) the joint strength (evaluated as a 95% non-rupture probability) under both the internal pressure and the temperature change increases as the coupling length increases and (2) the joint strength under both the internal pressure and the temperature change decreases when the external bending moment is applied to the joint. Furthermore, the numerical results are in fairly good agreement with the experimental results.


1988 ◽  
Vol 23 (2) ◽  
pp. 79-86 ◽  
Author(s):  
W S Utting ◽  
N Jones

Tensile tests were performed on a straight steel strand of three layer (12/6/1) construction, having a core wire diameter of 3.66 mm and 3.33 mm diameter helical wires, under conditions of full end-fixity, partial restraint, and ends free from torsional restraint. The torque generated under tensile load was recorded as well as the strand extension and rotation over a 600 mm gauge length. Wire tensions and bending moments in the outer layer of helical wires were determined at the mid-strand position from the outputs of strain gauges in groups of three with parallel grids and mounted parallel to the wire axis on the crown of each wire. The rate of strand extension under tensile load was found to be greater in tests with reduced torsional restraint, the greatest rate occurring in the free-end test. The strand rotation rate was also found to be greatest in the free-end test. The greatest difference from the theoretically predicted rates occurred in a free-end test with increasing load; predicted values of extension and rotation underestimated the test results by 12 and 23 per cent, respectively. Displacement of the load-torque plots occurred in the direction of reducing torque as testing proceeded. This appears to indicate the redistribution of the strand load between the layers of wires. Wire tensions showed a more even sharing of load in the fixed-end condition than in the free-end condition. The increase in rate of tension with strand load was less for most wires in tests with reduced torsional restraint, with the lowest tension rates developing in the free-end condition. For most wires, the rate of bending moment change with strand load was greater (in the sense tending to decrease tensile stress on wire crowns) in tests with reduced torsional restraint. However, the bending moment rates varied greatly between wires, the variation being greater in tests with reduced torsional restraint than in fixed-end tests.


2019 ◽  
Vol 9 (3) ◽  
pp. 521 ◽  
Author(s):  
Caicai Liao ◽  
Kezhong Shi ◽  
XiaoLu Zhao

Predicting the extreme loads in power production for the preliminary-design of large-scale wind turbine blade is both important and time consuming. In this paper, a simplified method, called Particle Swarm Optimization-Extreme Load Prediction Model (PSO-ELPM), is developed to quickly assess the extreme loads. This method considers the extreme loads solution as an optimal problem. The rotor speed, wind speed, pitch angle, yaw angle, and azimuth angle are selected as design variables. The constraint conditions are obtained by considering the influence of the aeroelastic property and control system of the wind turbine. An improved PSO algorithm is applied. A 1.5 MW and a 2.0 MW wind turbine are chosen to validate the method. The results show that the extreme root load errors between PSO-ELPM and FOCUS are less than 10%, while PSO-ELPM needs much less computational cost than FOCUS. The distribution of flapwise bending moments are close to the results of FOCUS. By analyzing the loads, we find that the extreme flapwise bending moment of the blade root in chord coordinate (CMF_ROOT) is largely reduced because of the control system, with the extreme edgewise bending moment of the blade root in chord coordinate (CME_ROOT) almost unchanged. Furthermore, higher rotor speed and smaller pitch angle will generate larger extreme bending moments at the blade root.


1983 ◽  
Vol 115 (8) ◽  
pp. 905-911 ◽  
Author(s):  
Jeremy N. McNeil ◽  
Ron E. Stinner

AbstractA comparison of the seasonal biology of Thymelicus lineola at Normandin and Joliette, Quebec from 1974 to 1976 showed marked differences between regions for the same year, and within regions for consecutive years. These data together with constant temperature development information were used to develop a predictive phenological model for this insect, which was then validated using independent data sets collected between 1976 and 1981. Good agreement between observed and predicted values were obtained. The usefulness of the model in predicting optimal spraying dates was tested at Amqui and Normandin, Quebec in 1982. Accurate predictions were obtained at least 2 weeks in advance, sufficient for use in a management programme.


2020 ◽  
Vol 75 (8) ◽  
pp. 739-747
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Maofei Mei

AbstractComplete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors and E1, E2, M1, and M2 line strengths, oscillator strengths, transitions rates are reported for the low-lying 41 levels of Mo XXVIII, belonging to the n = 3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects in multi-valence-electron systems. Comparisons are made between the present two data sets, as well as with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in a good agreement with other theoretical and experimental values. The present results are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing plasmas.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 363
Author(s):  
George Duffy ◽  
Fraser King ◽  
Ralf Bennartz ◽  
Christopher G. Fletcher

CloudSat is often the only measurement of snowfall rate available at high latitudes, making it a valuable tool for understanding snow climatology. The capability of CloudSat to provide information on seasonal and subseasonal time scales, however, has yet to be explored. In this study, we use subsampled reanalysis estimates to predict the uncertainties of CloudSat snow water equivalent (SWE) accumulation measurements at various space and time resolutions. An idealized/simulated subsampling model predicts that CloudSat may provide seasonal SWE estimates with median percent errors below 50% at spatial scales as small as 2° × 2°. By converting these predictions to percent differences, we can evaluate CloudSat snowfall accumulations against a blend of gridded SWE measurements during frozen time periods. Our predictions are in good agreement with results. The 25th, 50th, and 75th percentiles of the percent differences between the two measurements all match predicted values within eight percentage points. We interpret these results to suggest that CloudSat snowfall estimates are in sufficient agreement with other, thoroughly vetted, gridded SWE products. This implies that CloudSat may provide useful estimates of snow accumulation over remote regions within seasonal time scales.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bostjan Bezensek ◽  
Phuong Hoang

Piping items in power plants may experience combined bending and torsion moments during operation. Currently, there is a lack of guidance in the ASME B&PV Code Section XI for combined loading modes including pressure, torsion and bending. Finite element analyses were conducted for 24-inch diameter Schedule 80 pipes with local wall thinning subjected to tensile and compressive stresses. Plastic collapse bending moments were calculated under constant torsion moments. From the calculation results, it can be seen that collapse bending moment for pipes with local thinning subjected to tensile stress is smaller than that subjected to compressive stress. In addition, equivalent moment is defined as the root the sum of the squares of the torsion and bending moments. It is found that the equivalent moments can be approximated with the pure bending moments, when the wall thinning length is equal or less than 7.73R·t for the wall thinning depth of 75% of the nominal thickness, where R is the mean radius and t is the wall thickness of the pipe.


Sign in / Sign up

Export Citation Format

Share Document