Biochemical changes in the brain of hemiplegic migraine patients measured with 7 tesla 1H-MRS

Cephalalgia ◽  
2014 ◽  
Vol 34 (12) ◽  
pp. 959-967 ◽  
Author(s):  
R Zielman ◽  
WM Teeuwisse ◽  
F Bakels ◽  
J Van der Grond ◽  
A Webb ◽  
...  

Aim The aim of this study was to assess biochemical changes in the brain of patients with hemiplegic migraine in between attacks. Methods Eighteen patients with hemiplegic migraine (M:F, 7:11; age 38 ± 14 years) of whom eight had a known familial hemiplegic migraine (FHM) mutation (five in the CACNA1A gene (FHM1), three in the ATP1A2 gene (FHM2)) and 19 age- and sex-matched healthy controls (M:F, 7:12; mean age 38 ±  12 years) were studied. We used single-voxel 7 tesla 1H-MRS (STEAM, TR/TM/TE = 2000/19/21 ms) to investigate four brain regions in between attacks: cerebellum, hypothalamus, occipital lobe, and pons. Results Patients with hemiplegic migraine showed a significantly lower total N-acetylaspartate/total creatine ratio (tNAA/tCre) in the cerebellum (median 0.73, range 0.59–1.03) than healthy controls (median 0.79, range (0.67–0.95); p = 0.02). In FHM1 patients with a CACNA1A mutation, the tNAA/tCre was lowest. Discussion We found a decreased cerebellar tNAA/tCre ratio that might serve as an early biomarker for neuronal dysfunction and/or loss. This is the first high-spectral resolution 7 tesla 1H-MRS study of interictal biochemical brain changes in hemiplegic migraine patients.

Analyzing the brain regions for different activations corresponding to the activation input for an experimental setup of task functional MRI or a resting state functional Magnetic Resonance Imaging(fMRI) for a diagnosed or healthy control is a challenging issue as the processing data is voluminous 4D data with nearly 1,51,552 voxels for a single volume of 261 scans fMRI. The data considered for analysis consists of 10 healthy controls and 10 Attention Deficit Hyperactivity Disorder(ADHD) fMRI. The workflow starts with preprocessing the individual scan for realignment, coregistration and Normalisation to Montreal Neurological Institute (MNI) space. Single site scan visit consists of 64x64x37 voxels. Seventy independent components are obtained from processed data by data reduction, Independent Component Analysis (ICA) calculation, Back reconstruction and Component Calibration. ICA performs satisfactorily well on temporal and spatial localization. Visual medial network activation is pronounced in ADHD Controls than in healthy people. Sagittal, Axial and Coronal view of ADHD controls is obtained as component number 42.The analysis is further used for the automatic classification of healthy controls and ADHD people.


2008 ◽  
Vol 14 ◽  
pp. 1-19 ◽  
Author(s):  
Haeil Park ◽  
Gregory Iverson

Abstract. This study aims to localize the brain regions involved in the apprehension of Korean laryngeal contrasts and to investigate whether the Internal Model advanced by Callan et al. (2004) extends to first versus second language perception of these unique three-way laryngeal distinctions. The results show that there is a significant difference in activation between native and second-language speakers, consistent with the findings of Callan et al. Specific activities unique to younger native speakers of Korean relative to native speakers of English were seen in the cuneus (occipital lobe) and the right middle frontal gyrus (Brodmann Area [BA] 10), areas of the brain associated with pitch perception. The current findings uphold Silva's (2006) conclusion that the laryngeal contrasts of Korean are increasingly distinguished less by VOT differences than by their effect on pitch in the following vowel. A subsequent experiment was conducted to establish whether more traditional, older native speakers of Korean who still make clear VOT distinctions also activate both the cuneus and BA 10 in the same task. Preliminary results indicate that they do not, whereas speakers with overlapping VOT distinctions do show intersecting activations in these areas, thus corroborating Silva's claim of emergent pitch sensitivity in the Korean laryngeal system.


2008 ◽  
Vol 104 (1) ◽  
pp. 212-217 ◽  
Author(s):  
Andrew P. Binks ◽  
Vincent J. Cunningham ◽  
Lewis Adams ◽  
Robert B. Banzett

Hypoxia increases cerebral blood flow (CBF), but it is unknown whether this increase is uniform across all brain regions. We used H215O positron emission tomography imaging to measure absolute blood flow in 50 regions of interest across the human brain ( n = 5) during normoxia and moderate hypoxia. Pco2 was kept constant (∼44 Torr) throughout the study to avoid decreases in CBF associated with the hypocapnia that normally occurs with hypoxia. Breathing was controlled by mechanical ventilation. During hypoxia (inspired Po2 = 70 Torr), mean end-tidal Po2 fell to 45 ± 6.3 Torr (means ± SD). Mean global CBF increased from normoxic levels of 0.39 ± 0.13 to 0.45 ± 0.13 ml/g during hypoxia. Increases in regional CBF were not uniform and ranged from 9.9 ± 8.6% in the occipital lobe to 28.9 ± 10.3% in the nucleus accumbens. Regions of interest that were better perfused during normoxia generally showed a greater regional CBF response. Phylogenetically older regions of the brain tended to show larger vascular responses to hypoxia than evolutionary younger regions, e.g., the putamen, brain stem, thalamus, caudate nucleus, nucleus accumbens, and pallidum received greater than average increases in blood flow, while cortical regions generally received below average increases. The heterogeneous blood flow distribution during hypoxia may serve to protect regions of the brain with essential homeostatic roles. This may be relevant to conditions such as altitude, breath-hold diving, and obstructive sleep apnea, and may have implications for functional brain imaging studies that involve hypoxia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luping Zhang ◽  
Jinwen Huang ◽  
Zhengxiang Zhang ◽  
Zhijian Cao

Background: Although there have been many magnetic resonance spectroscopy (MRS) studies of migraine, few have focused on migraines during an attack. Here, we aimed to assess metabolite changes in the brain of patients with migraine, both during an attack and in the interictal phase.Methods: Six patients (one man and five women, mean age: 39 ± 10 years) with migraine without aura during the attack (MWoA-DA), 13 patients (three men and 10 women, mean age: 31 ± 9 years) with migraine without aura during the interictal period (MWoA-DI), and 13 healthy controls (HC) (four men and nine women, mean age: 31 ± 9 years) were studied. All subjects underwent an MRS examination focusing on the occipital lobe. Metabolite changes were investigated among three groups.Results: The MWoA-DA patients had lower glutathione/total creatine ratio (GSH/tCr) than the MWoA-DI patients and HC. Furthermore, MWoA-DI patients showed lower total choline/total creatine ratio (tCho/tCr) than those in the other two groups. The GSH/tCr ratio was positively correlated with attack frequency in the MWoA-DI group. The tCho/tCr ratio was positively correlated with attack frequency and Migraine Disability Assessment Scale (MIDAS) scores in the MWoA-DA group.Conclusion: The present study suggests the existence of distinct pathophysiological states between the MWoA-DA and MWoA-DI groups. Neuronal dysfunction is a possible predisposing factor for migraine attack onset, along with oxidative stress and inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valeria Barletta ◽  
Elena Herranz ◽  
Constantina A. Treaba ◽  
Ambica Mehndiratta ◽  
Russell Ouellette ◽  
...  

Cortical demyelination occurs early in multiple sclerosis (MS) and relates to disease outcome. The brain cortex has endogenous propensity for remyelination as proven from histopathology study. In this study, we aimed at characterizing cortical microstructural abnormalities related to myelin content by applying a novel quantitative MRI technique in early MS. A combined myelin estimation (CME) cortical map was obtained from quantitative 7-Tesla (7T) T2* and T1 acquisitions in 25 patients with early MS and 19 healthy volunteers. Cortical lesions in MS patients were classified based on their myelin content by comparison with CME values in healthy controls as demyelinated, partially demyelinated, or non-demyelinated. At follow-up, we registered changes in cortical lesions as increased, decreased, or stable CME. Vertex-wise analysis compared cortical CME in the normal-appearing cortex in 25 MS patients vs. 19 healthy controls at baseline and investigated longitudinal changes at 1 year in 10 MS patients. Measurements from the neurite orientation dispersion and density imaging (NODDI) diffusion model were obtained to account for cortical neurite/dendrite loss at baseline and follow-up. Finally, CME maps were correlated with clinical metrics. CME was overall low in cortical lesions (p = 0.03) and several normal-appearing cortical areas (p < 0.05) in the absence of NODDI abnormalities. Individual cortical lesion analysis revealed, however, heterogeneous CME patterns from extensive to partial or absent demyelination. At follow-up, CME overall decreased in cortical lesions and non-lesioned cortex, with few areas showing an increase (p < 0.05). Cortical CME maps correlated with processing speed in several areas across the cortex. In conclusion, CME allows detection of cortical microstructural changes related to coexisting demyelination and remyelination since the early phases of MS, and shows to be more sensitive than NODDI and relates to cognitive performance.


2019 ◽  
Vol 8 (11) ◽  
pp. 1966 ◽  
Author(s):  
Jun-Cheng Weng ◽  
Yu-Syuan Chou ◽  
Yuan-Hsiung Tsai ◽  
Chun-Te Lee ◽  
Ming-Hong Hsieh ◽  
...  

Our study aimed to clarify the neuroimaging correlates of suicide attempt by comparing differences in functional magnetic resonance imaging (fMRI) among depressed suicide attempters, depressed patients without suicide attempt history, and healthy controls through comprehensive and novel fMRI analyses and methods in the same study population. The association between depression severity and aspects of the brain imaging was also discussed. Our study recruited 109 participants who were assigned to three groups: 33 depressed patients with suicide attempt (SA), 32 depressed patients without suicide attempt (NS), and 44 healthy controls (HC). All participants were scanned using a 3 T MRI imaging system to obtain resting-state functional images. In seed-based correlation analysis, we found altered functional connectivity in some brain regions of the SA compared with the NS or HC, especially in the hippocampus and thalamus. In the voxel-based analysis, our results showed differential activation and regional homogeneity of the temporal lobe and several brain regions in the SA compared with the NS and HC. We also found that some brain areas correlated with the Hamilton Depression Rating Scale (HAM-D), anxiety, and depression scores, especially in the frontal and temporal lobes. Graph theoretical analysis (GTA) and network-based statistical (NBS) analyses revealed different topological organization as well as slightly better global integration and worse local segregation of the brain network (i.e., more like a random network) in depressed participants compared with healthy participants. We concluded that the brain function of major depressive disorders with and without suicide attempts changed compared with healthy participants.


2021 ◽  
Author(s):  
parthee pan ◽  
Raja Paul Perinbam ◽  
Krishna Murthy ◽  
Shanker Rajendiran Nagalingam ◽  
krishna kumari s ◽  
...  

Abstract The neurologist analyse the brain images to diagnose the disease via structure and shape of the part in the scanned Medical images such as CT, MRI, and PET.The Medical image segmentation perform less in the regions where no or little contrast,artefacts over the different boundary regions. The manual process of segmentation show poor boundary differentiation dueto discernibility in shape and location, intra and inter observer reliability. In this paper, we propose a dyadic Cat optimization (DCO) algorithm to segment the regions in the brain from CT and MRI image via Non- linear perspective Foreground and Back Ground projection. The DCO algorithm remove the artefacts in the boundary regions and provide the exact structure and shape of the brain regions. The DCO algorithm show the region boundary such as plerygomaxillary fissure, occipital lobe, vaginal process zygomatic arch, maxilla and piriform aperture with high visibility in the regions of inadequately visible boundary and distinguish the deformable shape. The DCO algorithm show the increased SSIM and 90 percent accuracy.


2021 ◽  
Vol 11 (6) ◽  
pp. 1580-1589
Author(s):  
R. Partheepan ◽  
J. Raja Paul Perinbam ◽  
M. Krishnamurthy ◽  
N. R. Shanker

The neurologist analyses the brain images to diagnose disease via structure and shape of the part in scanned Medical images such as CT, MRI, and PET. The Medical image segmentation performs less in the regions where no or little contrast, artifacts over the different boundary regions. The manual process of segmentation shows poor boundary differentiation due to discernibility in shape and location, intra and inter observer reliability. In this paper, we propose dyadic CAT optimization (DCO) algorithm to segment the regions in the brain from CT and MRI image via Non-linear perspective Foreground and Back Ground projection. The DCO algorithm removes the artifacts in the boundary regions and provide the exact structure and shape of the brain regions. The DCO algorithm shows the region boundary for pterygomaxillary fissure, occipital lobe, vaginal process zygomatic arch, maxilla and piriform aperture in brain image with high visibility in the regions of inadequately visible boundary and distinguishes the deformable shape. The DCO algorithm applies on 50 images and eight images with complex bone and muscle mass structure for performance evaluation. The DCO algorithm shows the increased Structural similarity index (SSIM) with 90% accuracy.


2006 ◽  
Vol 43 (6) ◽  
pp. 683-690 ◽  
Author(s):  
Grant Goldsberry ◽  
Dan O'Leary ◽  
Rich Hichwa ◽  
Peg Nopoulos

Objective: The current study was designed to evaluate the neurobiology of reading in a group of men with nonsyndromic clefts of the lip or palate (NSCLP) compared with healthy controls by positron emission tomography. Design: Subjects included eight men with NSCLP compared with six healthy control men. By using radioactively labeled water (O15), regional brain blood flow was obtained during the performance of three simple reading tasks: reading unrelated words, reading unrelated sentences, and reading a story. Results: During each of the reading conditions, NSCLP subjects compared with healthy controls showed increased blood flow in areas previously reported to be involved in language processing and reading (inferior frontal lobe, cerebellum, and occipital lobe). The increased blood flow suggests a possible neural inefficiency. In contrast, when analyzing the brain regions involved in more complex language functioning (reading stories compared with reading only words), control subjects showed an increase in blood flow in a distributed neural circuit, whereas the NSCLP subjects showed a decrease in flow in these regions. Additionally, the NSCLP subjects had activation of several regions not activated in the healthy controls, suggesting a compensatory circuit used for this more complex reading task. Conclusions: These results indicate that subjects with NSCLP show abnormalities in the function of the distributed neural circuitry used for oral reading.


2019 ◽  
Vol 26 (6) ◽  
pp. 668-678 ◽  
Author(s):  
Valeria T Barletta ◽  
Elena Herranz ◽  
Costantina A Treaba ◽  
Russell Ouellette ◽  
Ambica Mehndiratta ◽  
...  

Background: Activated microglia, which can be detected in vivo by 11C-PBR28 positron emission tomography (PET), represent a main component of MS pathology in the brain. Their role in the cerebellum is still unexplored, although cerebellar involvement in MS is frequent and accounts for disability progression. Objectives: We aimed at characterizing cerebellar neuroinflammation in MS patients compared to healthy subjects by combining 11C-PBR28 MRI-Positron Emission Tomography (MR-PET) with 7 Tesla (T) MRI and assessing its relationship with brain neuroinflammation and clinical outcome measures. Methods: Twenty-eight MS patients and 16 healthy controls underwent 11C-PBR28 MR-PET to measure microglia activation in normal appearing cerebellum and lesions segmented from 7 T scans. Patients were evaluated using the Expanded Disability Status Scale and Symbol Digit Modalities Test. 11C-PBR28 binding was assessed in regions of interest using 60–90 minutes standardized uptake values normalized by a pseudo-reference region in the brain normal appearing white matter. Multilinear regression was used to compare tracer uptake in MS and healthy controls and assess correlations with clinical scores. Results: In all cerebellar regions examined, MS patients showed abnormally increased tracer uptake, which correlated with cognitive and neurological disability. Conclusion: Neuroinflammation is widespread in the cerebellum of patients with MS and related to neurological disability and cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document