Evaluation of Multiple Hardware and Software in the Loop Signal Controllers in Simulation Environment

Author(s):  
Sharmin-E-Shams Chowdhury ◽  
Aleksandar Stevanovic ◽  
Nikola Mitrovic

This study evaluates two groups of methods to model traffic signal operations in microscopic simulation: hardware-in-the-loop simulation (HILS) and software-in-the-loop simulation (SILS). These methods have become standards for accurate modeling of traffic signal operations, but in spite of the large number of available options there are no studies that have conducted relevant comparative evaluations. This study bridges this gap by investigating signal timing and operational differences of these two methods in basic actuated operations of a single signalized intersection. The emphasis is given to broad examination of various platforms as opposed to more complex experiments done with individual platforms. A representative number of 65-minute simulation runs was executed for each experimental scenario. The results showed that differences between various HILS and SILS platforms are large enough that one cannot confidently switch between the platforms without affecting the final outcomes. The study confirmed previous findings about the impact of the initialization process on the simulation results, but the initialization itself does not seem to be the major source of discrepancy. Further investigation is needed to reveal role of consistency of internal NEMA-based controller logics among various controllers. These findings put a considerable dilemma/restriction on how various HILS and SILS platforms, either alone or in conjunction with other higher forms of traffic control strategies, can be used in joint fashion.

1998 ◽  
Vol 1634 (1) ◽  
pp. 130-135 ◽  
Author(s):  
Darcy Bullock ◽  
Alison Catarella

Features and operating modes of the current generation of actuated controllers have evolved to the point where there is a significant difference between the configuration parameters associated with an actuated controller and the information obtained from traffic signal system optimization packages such as TRANSYT 7F and PASSER II. As a result, TRANSYT 7F and PASSER II give no guidance on the impact or sensitivity of many actuated control parameters on a traffic signal system’s performance. Furthermore, none of the current generation of microscopic simulation models is detailed enough to evaluate the effect particular features, such as cycle transition algorithms or return from preemption algorithms, have on overall system performance. To address this need, an enhancement made to the CORSIM package that allows physical controllers to be connected to CORSIM is described in this paper. In this arrangement, CORSIM provides the microscopic simulation and tabulation of measures of effectiveness (MOEs). However, instead of CORSIM emulating controller features, CORSIM sends detector information to the physical controllers and reads back phase indications. This type of simulation is often referred to as hardware-in-the-loop. Since CORSIM tabulates performance MOEs, qualitative before-and-after measurements can be obtained for any hardware conforming to the NEMA TS-1 electrical standard for phase outputs and detector inputs. To validate the performance of this hardware-in-the-loop approach, an evaluation is presented that shows there is no evidence of a significant statistical difference in MOEs between the internal control algorithm and the hardware-in-the-loop control algorithm for both a fixed time and actuated controller.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


Author(s):  
Yang Carl Lu ◽  
Holly Krambeck ◽  
Liang Tang

Deployment of an adaptive area traffic control system is expensive; physical sensors require installation, calibration, and regular maintenance. Because of the high level of technical and financial resources required, area traffic control systems found in developing countries often are minimally functioning. In Cebu City, Philippines, for example, the Sydney Coordinated Adaptive Traffic System was installed before 2000, and fewer than 35% of detectors were still functioning as of January 2015. To address this challenge, a study was designed to determine whether taxi company GPS data are sufficient to evaluate and improve traffic signal timing plans in resource-constrained environments. If this work is successful, the number of physical sensors required to support those systems may be reduced and thereby substantially lower the costs of installation and maintenance. Taxi GPS data provided by a regional taxi-hailing app were used to design and implement methodologies for evaluating the performance of traffic signal timing plans and for deriving updated fixed-dynamic plans, which are fixed plans (with periods based on observable congestion patterns rather than only time of day) iterated regularly until optimization is reached. To date, three rounds of iterations have been conducted to ensure the stability of the proposed signal timings. Results of exploratory analysis indicate that the algorithm is capable of generating reasonable green time splits, but cycle length adjustment must be considered in the future.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Narimane Nekkab ◽  
Pascal Crépey ◽  
Pascal Astagneau ◽  
Lulla Opatowski ◽  
Laura Temime

Abstract The spread of carbapenemase-producing Enterobacteriaceae (CPE) in healthcare settings is a major public health threat that has been associated with cross-border and local patient transfers between healthcare facilities. Since the impact of transfers on spread may vary, our study aimed to assess the contribution of a patient transfer network on CPE incidence and spread at a countrywide level, with a case study of France from 2012 to 2015. Our results suggest a transition in 2013 from a CPE epidemic sustained by internationally imported episodes to an epidemic sustained by local transmission events through patient transfers. Incident episodes tend to occur within close spatial distance of their potential infector. We also observe an increasing frequency of multiple spreading events, originating from a limited number of regional hubs. Consequently, coordinated prevention and infection control strategies should focus on transfers of carriers of CPE to reduce regional and inter-regional transmission.


2021 ◽  
Vol 15 (5) ◽  
pp. e0009449
Author(s):  
Maylis Layan ◽  
Simon Dellicour ◽  
Guy Baele ◽  
Simon Cauchemez ◽  
Hervé Bourhy

Background Rabies is a fatal yet vaccine-preventable disease. In the last two decades, domestic dog populations have been shown to constitute the predominant reservoir of rabies in developing countries, causing 99% of human rabies cases. Despite substantial control efforts, dog rabies is still widely endemic and is spreading across previously rabies-free areas. Developing a detailed understanding of dog rabies dynamics and the impact of vaccination is essential to optimize existing control strategies and developing new ones. In this scoping review, we aimed at disentangling the respective contributions of mathematical models and phylodynamic approaches to advancing the understanding of rabies dynamics and control in domestic dog populations. We also addressed the methodological limitations of both approaches and the remaining issues related to studying rabies spread and how this could be applied to rabies control. Methodology/principal findings We reviewed how mathematical modelling of disease dynamics and phylodynamics have been developed and used to characterize dog rabies dynamics and control. Through a detailed search of the PubMed, Web of Science, and Scopus databases, we identified a total of n = 59 relevant studies using mathematical models (n = 30), phylodynamic inference (n = 22) and interdisciplinary approaches (n = 7). We found that despite often relying on scarce rabies epidemiological data, mathematical models investigated multiple aspects of rabies dynamics and control. These models confirmed the overwhelming efficacy of massive dog vaccination campaigns in all settings and unraveled the role of dog population structure and frequent introductions in dog rabies maintenance. Phylodynamic approaches successfully disentangled the evolutionary and environmental determinants of rabies dispersal and consistently reported support for the role of reintroduction events and human-mediated transportation over long distances in the maintenance of rabies in endemic areas. Potential biases in data collection still need to be properly accounted for in most of these analyses. Finally, interdisciplinary studies were determined to provide the most comprehensive assessments through hypothesis generation and testing. They also represent new avenues, especially concerning the reconstruction of local transmission chains or clusters through data integration. Conclusions/significance Despite advances in rabies knowledge, substantial uncertainty remains regarding the mechanisms of local spread, the role of wildlife in dog rabies maintenance, and the impact of community behavior on the efficacy of control strategies including vaccination of dogs. Future integrative approaches that use phylodynamic analyses and mechanistic models within a single framework could take full advantage of not only viral sequences but also additional epidemiological information as well as dog ecology data to refine our understanding of rabies spread and control. This would represent a significant improvement on past studies and a promising opportunity for canine rabies research in the frame of the One Health concept that aims to achieve better public health outcomes through cross-sector collaboration.


2012 ◽  
Vol 49 (3) ◽  
Author(s):  
Xuesong Zhu ◽  
Albert Gan ◽  
David Shen

Traffic signal warrants set the minimum conditions under which a traffic signal installation may be appropriate. The four-hour volume signal warrant in the current Manual on Uniform Traffic Control Devices (MUTCD) (FHWA 2009) is applied based on a set of critical vehicular volumes for different lane combinations of major and minor streets. This paper describes an effort to apply microscopic simulation to evaluate the critical volumes used in the four-hour warrant. The results show significant differences in average control delay for minor street traffic under different volume combinations, lane configurations, turning volume percentages, heavy vehicle percentages, and the number of major street lanes (four versus six lanes), most of which are not currently considered in the four-hour warrant. This finding provides some evidence of the need to possibly revise the critical design values of the current four-hour volume warrant.


Sign in / Sign up

Export Citation Format

Share Document