Automatic Vehicle Classification using Roadside LiDAR Data

Author(s):  
Jianqing Wu ◽  
Hao Xu ◽  
Yichen Zheng ◽  
Yongsheng Zhang ◽  
Bin Lv ◽  
...  

This research presented a new approach for vehicle classification using roadside LiDAR sensor. Six features (one feature, object height profile, contains 10 sub-features) extracted from the vehicle trajectories were applied to distinguish different classes of vehicles. The vehicle classification aims to assign the objects into ten different types defined by FHWA. A database containing 1,056 manually marked samples and their corresponding pictures was provided for analysis. Those samples were collected at different scenarios (roads and intersections, different speed limits, day and night, different distance to LiDAR, etc.). Naïve Bayes, K-nearest neighbor classification, random forest (RF), and support vector machine were applied for vehicle classification. The results showed that the performance of different methods varied by class. RF has the highest overall accuracy among those investigated methods. Some types were merged together to serve different types of users, which can also improve the accuracy of vehicle classification. The validation indicated that the distance between the object and the roadside LiDAR can influence the accuracy. This research also provided the distribution of the overall accuracy of RF along the distance to LiDAR. For the VLP-16 LiDAR, to achieve an accuracy of 91.98%, the distance between the object and LiDAR should be less than 30 ft. Users can set up the location of the roadside LiDAR based on their own requirements of the classification accuracy.

2021 ◽  
Vol 13 (2) ◽  
pp. 76-83
Author(s):  
Ridho Ananda ◽  
Agi Prasetiadi

Classification is one of the data mining topics that will predict an object to go into a certain group. The prediction process can be performed by using similarity measures, classification trees, or regression. On the other hand, Procrustes refers to a technique of matching two configurations that have been implemented for outlier detection. Based on the result, Procrustes has a potential to tackle the misclassification problem when the outliers are assumed as the misclassified object. Therefore, the Procrustes classification algorithm (PrCA) and Procrustes nearest neighbor classification algorithm (PNNCA) were proposed in this paper. The results of those algorithms had been compared to the classical classification algorithms, namely k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), AdaBoost (AB), Random Forest (RF), Logistic Regression (LR), and Ridge Regression (RR). The data used were iris, cancer, liver, seeds, and wine dataset. The minimum and maximum accuracy values obtained by the PrCA algorithm were 0.610 and 0.925, while the PNNCA were 0.610 and 0.963. PrCA was generally better than k-NN, SVM, and AB. Meanwhile, PNNCA was generally better than k-NN, SVM, AB, and RF. Based on the results, PrCA and PNNCA certainly deserve to be proposed as a new approach in the classification process.


Author(s):  
Mohammed K. Binjaah ◽  
Abdullah Aljuhani ◽  
Umar Alqasemi

Computer-Aided Detection (CAD) systems are one of the most effected tools nowadays in aiding physicians in the detection of liver tumors at early stage. In this paper, the CADe system will be built which has the ability to detect the abnormal tumor inside the liver. In order to create that system, different types of classifiers must be implemented. In our CADe system, a support vector machine (SVM) and K-Nearest Neighbor (KNN) will be used as classifiers. A total number of 120 images including the normal and abnormal cases were collected. Initially, the features will be extracted from database images in order to distinguish between the classes of those liver tumors. Then, by using SVM and KNN the images will be classified into two classes normal and abnormal cases. The paper reveals that SVM and KNN, which demonstrated 100 percent precision, 100 percent sensitivity, and 100 percent specificity, were the best classifiers.


2012 ◽  
Vol 9 (2) ◽  
pp. 691-712 ◽  
Author(s):  
Nenad Tomasev ◽  
Dunja Mladenic

Hubness is a recently described aspect of the curse of dimensionality inherent to nearest-neighbor methods. This paper describes a new approach for exploiting the hubness phenomenon in k-nearest neighbor classification. We argue that some of the neighbor occurrences carry more information than others, by the virtue of being less frequent events. This observation is related to the hubness phenomenon and we explore how it affects high-dimensional k-nearest neighbor classification. We propose a new algorithm, Hubness Information k-Nearest Neighbor (HIKNN), which introduces the k-occurrence informativeness into the hubness-aware k-nearest neighbor voting framework. The algorithm successfully overcomes some of the issues with the previous hubness-aware approaches, which is shown by performing an extensive evaluation on several types of high-dimensional data.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Aaron Frederick Bulagang ◽  
James Mountstephens ◽  
Jason Teo

Abstract Background Emotion prediction is a method that recognizes the human emotion derived from the subject’s psychological data. The problem in question is the limited use of heart rate (HR) as the prediction feature through the use of common classifiers such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Random Forest (RF) in emotion prediction. This paper aims to investigate whether HR signals can be utilized to classify four-class emotions using the emotion model from Russell’s in a virtual reality (VR) environment using machine learning. Method An experiment was conducted using the Empatica E4 wristband to acquire the participant’s HR, a VR headset as the display device for participants to view the 360° emotional videos, and the Empatica E4 real-time application was used during the experiment to extract and process the participant's recorded heart rate. Findings For intra-subject classification, all three classifiers SVM, KNN, and RF achieved 100% as the highest accuracy while inter-subject classification achieved 46.7% for SVM, 42.9% for KNN and 43.3% for RF. Conclusion The results demonstrate the potential of SVM, KNN and RF classifiers to classify HR as a feature to be used in emotion prediction in four distinct emotion classes in a virtual reality environment. The potential applications include interactive gaming, affective entertainment, and VR health rehabilitation.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Jun Meng ◽  
Qiang Kang ◽  
Zheng Chang ◽  
Yushi Luan

Abstract Background Long noncoding RNAs (lncRNAs) play an important role in regulating biological activities and their prediction is significant for exploring biological processes. Long short-term memory (LSTM) and convolutional neural network (CNN) can automatically extract and learn the abstract information from the encoded RNA sequences to avoid complex feature engineering. An ensemble model learns the information from multiple perspectives and shows better performance than a single model. It is feasible and interesting that the RNA sequence is considered as sentence and image to train LSTM and CNN respectively, and then the trained models are hybridized to predict lncRNAs. Up to present, there are various predictors for lncRNAs, but few of them are proposed for plant. A reliable and powerful predictor for plant lncRNAs is necessary. Results To boost the performance of predicting lncRNAs, this paper proposes a hybrid deep learning model based on two encoding styles (PlncRNA-HDeep), which does not require prior knowledge and only uses RNA sequences to train the models for predicting plant lncRNAs. It not only learns the diversified information from RNA sequences encoded by p-nucleotide and one-hot encodings, but also takes advantages of lncRNA-LSTM proposed in our previous study and CNN. The parameters are adjusted and three hybrid strategies are tested to maximize its performance. Experiment results show that PlncRNA-HDeep is more effective than lncRNA-LSTM and CNN and obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% F1 score on Zea mays dataset which are better than those of several shallow machine learning methods (support vector machine, random forest, k-nearest neighbor, decision tree, naive Bayes and logistic regression) and some existing tools (CNCI, PLEK, CPC2, LncADeep and lncRNAnet). Conclusions PlncRNA-HDeep is feasible and obtains the credible predictive results. It may also provide valuable references for other related research.


Sign in / Sign up

Export Citation Format

Share Document