Rethinking the European Green Deal

2020 ◽  
Vol 52 (4) ◽  
pp. 633-641
Author(s):  
Mario Pianta ◽  
Matteo Lucchese

The European Green Deal (EGD), launched by the European Commission in December 2019, is a major policy package addressing climate change and aiming at a “just and inclusive” transition. Several shortcomings can be identified in the EGD: it lacks a vision of a just, post-carbon economy for Europe; available resources are inadequate to reach stated objectives; and implementation tools are limited. We argue that making Europe’s production systems carbon neutral would require a broader range of “green” industrial policies that need to jointly address environmental sustainability, structural change, and fairness of economic outcomes in Europe.

During 1990-2020, the global auditing/accounting and management consulting industry sectors experienced significant structural changes which have had un-even effects among large, medium and small auditing firms. The first section of this chapter summarizes the structural changes. The second section summarizes the antitrust problems. The third section discusses some of the climate-change and environmental pollution problems that are significantly affected by regulation of accounting firms and consulting firms; and introduces new solutions. In many countries, accounting firms have the primary responsibility for auditing firms' compliance with mechanisms such as emissions credits, environmental/sustainability accounting and compliance with environmental regulations; and consulting firms (by advising boards-of-directors and senior executives) informally and substantially influence firms' policies and procedures pertaining to waste/pollution and climate-change. The topics of the three sections (structural change, antitrust and the auditing/consulting firms' role in external audits and strategy pertaining to pollution, climate change and waste-management) are linked and or can have symbiotic effects on each other.


2012 ◽  
Vol 3 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Vivek Shandas ◽  
Meenakshi Rao ◽  
Moriah McSharry McGrath

Social and behavioral research is crucial for securing environmental sustainability and improving human living environments. Although the majority of people now live in urban areas, we have limited empirical evidence of the anticipated behavioral response to climate change. Using empirical data on daily household residential water use and temperature, our research examines the implications of future climate conditions on water conservation behavior in 501 households within the Portland (OR) metropolitan region. We ask whether and how much change in ambient temperatures impact residential household water use, while controlling for taxlot characteristics. Based on our results, we develop a spatially explicit description about the changes in future water use for the study region using a downscaled future climate scenario. The results suggest that behavioral responses are mediated by an interaction of household structural attributes, and magnitude and temporal variability of weather parameters. These findings have implications for the way natural resource managers and planning bureaus prepare for and adapt to future consequences of climate change.


2019 ◽  
Vol 11 (18) ◽  
pp. 4998 ◽  
Author(s):  
Federica Borgonovo ◽  
Cecilia Conti ◽  
Daniela Lovarelli ◽  
Valentina Ferrante ◽  
Marcella Guarino

Ammonia (NH3), methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions from livestock farms contribute to negative environmental impacts such as acidification and climate change. A significant part of these emissions is produced from the decomposition of slurry in livestock facilities, during storage and treatment phases. This research aimed at evaluating the effectiveness of the additive “SOP LAGOON” (made of agricultural gypsum processed with proprietary technology) on (i) NH3 and Greenhouse Gas (GHG) emissions, (ii) slurry properties and N loss. Moreover, the Life Cycle Assessment (LCA) method was applied to assess the potential environmental impact associated with stored slurry treated with the additive. Six barrels were filled with 65 L of cattle slurry, of which three were used as a control while the additive was used in the other three. The results indicated that the use of the additive led to a reduction of total nitrogen, nitrates, and GHG emissions. LCA confirmed the higher environmental sustainability of the scenario with the additive for some environmental impact categories among which climate change. In conclusion, the additive has beneficial effects on both emissions and the environment, and the nitrogen present in the treated slurry could partially displace a mineral fertilizer, which can be considered an environmental credit.


Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 60
Author(s):  
Patricia Ruiz-García ◽  
Cecilia Conde-Álvarez ◽  
Jesús David Gómez-Díaz ◽  
Alejandro Ismael Monterroso-Rivas

Local knowledge can be a strategy for coping with extreme events and adapting to climate change. In Mexico, extreme events and climate change projections suggest the urgency of promoting local adaptation policies and strategies. This paper provides an assessment of adaptation actions based on the local knowledge of coffee farmers in southern Mexico. The strategies include collective and individual adaptation actions that farmers have established. To determine their viability and impacts, carbon stocks and fluxes in the system’s aboveground biomass were projected, along with water balance variables. Stored carbon contents are projected to increase by more than 90%, while maintaining agroforestry systems will also help serve to protect against extreme hydrological events. Finally, the integration of local knowledge into national climate change adaptation plans is discussed and suggested with a local focus. We conclude that local knowledge can be successful in conserving agroecological coffee production systems.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1187
Author(s):  
Wouter Julius Smolenaars ◽  
Spyridon Paparrizos ◽  
Saskia Werners ◽  
Fulco Ludwig

In recent decades, multiple flood events have had a devastating impact on soybean production in Argentina. Recent advances suggest that the frequency and intensity of destructive flood events on the Argentinian Pampas will increase under pressure from climate change. This paper provides bottom-up insight into the flood risk for soybean production systems under climate change and the suitability of adaptation strategies in two of the most flood-prone areas of the Pampas region. The flood risk perceptions of soybean producers were explored through interviews, translated into climatic indicators and then studied using a multi-model climate data analysis. Soybean producers perceived the present flood risk for rural accessibility to be of the highest concern, especially during the harvest and sowing seasons when heavy machinery needs to reach soybean lots. An analysis of climatic change projections found a rising trend in annual and harvest precipitation and a slight drying trend during the sowing season. This indicates that the flood risk for harvest accessibility may increase under climate change. Several adaptation strategies were identified that can systemically address flood risks, but these require collaborative action and cannot be undertaken by individual producers. The results suggest that if cooperative adaptation efforts are not made in the short term, the continued increase in flood risk may force soybean producers in the case study locations to shift away from soybean towards more robust land uses.


2015 ◽  
Vol 18 (13) ◽  
pp. 2498-2508 ◽  
Author(s):  
Sarah W James ◽  
Sharon Friel

AbstractObjectiveTo determine key points of intervention in urban food systems to improve the climate resilience, equity and healthfulness of the whole system.DesignThe paper brings together evidence from a 3-year, Australia-based mixed-methods research project focused on climate change adaptation, cities, food systems and health. In an integrated analysis of the three research domains – encompassing the production, distribution and consumption sectors of the food chain – the paper examines the efficacy of various food subsystems (industrial, alternative commercial and civic) in achieving climate resilience and good nutrition.SettingGreater Western Sydney, Australia.SubjectsPrimary producers, retailers and consumers in Western Sydney.ResultsThis overarching analysis of the tripartite study found that: (i) industrial food production systems can be more environmentally sustainable than alternative systems, indicating the importance of multiple food subsystems for food security; (ii) a variety of food distributors stocking healthy and sustainable items is required to ensure that these items are accessible, affordable and available to all; and (iii) it is not enough that healthy and sustainable foods are produced or sold, consumers must also want to consume them. In summary, a resilient urban food system requires that healthy and sustainable food items are produced, that consumers can attain them and that they actually wish to purchase them.ConclusionsThis capstone paper found that the interconnected nature of the different sectors in the food system means that to improve environmental sustainability, equity and population health outcomes, action should focus on the system as a whole and not just on any one sector.


2021 ◽  
Author(s):  
Nicole Chalmer

Global food security is dependent on ecologically viable production systems, but current agricultural practices are often at odds with environmental sustainability. Resolving this disparity is a huge task, but there is much that can be learned from traditional food production systems that persisted for thousands of years. Ecoagriculture for a Sustainable Food Future describes the ecological history of food production systems in Australia, showing how Aboriginal food systems collapsed when European farming methods were imposed on bushlands. The industrialised agricultural systems that are now prevalent across the world require constant input of finite resources, and continue to cause destructive environmental change. This book explores the damage that has arisen from farming systems unsuited to their environment, and presents compelling evidence that producing food is an ecological process that needs to be rethought in order to ensure resilient food production into the future. Cultural sensitivity Readers are warned that there may be words, descriptions and terms used in this book that are culturally sensitive, and which might not normally be used in certain public or community contexts. While this information may not reflect current understanding, it is provided by the author in a historical context.


2021 ◽  
Author(s):  
Jiacheng Sun ◽  
Ondrej Masek

<p>In recent years, the rapid increase of CO<sub>2</sub> emission in the atmosphere and the resulting issues such as global warming and climate change have now become significant barriers to environmental sustainability. Although fossil CO<sub>2</sub> emissions have decreased in some of the world's largest emitters, including 11% in the EU, 12% in the US and 1.7% in China annually, the estimated global CO<sub>2</sub> emission amount still reached 40 G tonnes in 2020. The purpose of studying biochar produced by pyrolysis is essential to develop the knowledge of carbon cycles and nutrient components in soil. Among all types of feedstocks, algae grow incredibly rapidly compared to other biological materials, about 500-1500 times higher, which will boot the carbon sequestration rate. Therefore, the study of algal biochar production through pyrolysis has great significance for migrating climate change and developing carbon capture and storage.</p><p>This study focuses on a comprehensive review of previous literature on conventional and advanced macroalgae and microalgae pyrolysis for producing biochar and related valuable by-products like bio-oil and bio-syngas, aiming to establish a state-of-the-art of algal biochar for different soil-related applications and demonstrate the bottlenecks and opportunities. Specifically, a thorough comparison of algae species (20 microalgae and 20 macroalgae) is developed to benefit future researchers, involving chemical compositions, proximate analysis, solid-product fraction, physical properties and chemical properties. Redox conditions, surface functional groups and pH conditions are determined in lab-scale. Moreover, different algal biochar applications on soil and plant are analysed to optimise the commercial value of algal biochar, including soil conditioner, compositing additives, carrier for fertilisers, manure treatment and stable blending. Due to the abundant mineral contents (0.23-1.21% Na, 0.03-2.92% K, 0.75-7.17% Al, 0.19-1.24% Mg, 6.5-7% Ca and 0.04-0.69% Fe) of algal biochar, this study not only reviews the positive effects on soil improvement but also negative effects such as phytotoxic effect and heavy-metal pollution. A laboratory-based chemical oxidation approach (Edinburgh Stability Tool) is used to assess relatively long-term biochar stability and the influence of nutrient cycling. The optimal pyrolysis conditions (temperature, retention time and heating rate) and potential future commercial applications are obtained through the comprehensive review of algal biochar for soil improvement.    </p>


Sign in / Sign up

Export Citation Format

Share Document