Optimization of Compression Molding Process in Laminated Woven Composites

2005 ◽  
Vol 24 (7) ◽  
pp. 775-780 ◽  
Author(s):  
L. Onal ◽  
S. Adanur
Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3207 ◽  
Author(s):  
Edgar Adrián Franco-Urquiza ◽  
Annika Dollinger ◽  
Mauricio Torres-Arellano ◽  
Saúl Piedra ◽  
Perla Itzel Alcántara Llanas ◽  
...  

Sandwich composites are widely used in the manufacture of aircraft cabin interior panels for commercial aircraft, mainly due to the light weight of the composites and their high strength-to-weight ratio. Panels are used for floors, ceilings, kitchen walls, cabinets, seats, and cabin dividers. The honeycomb core of the panels is a very light structure that provides high rigidity, which is considerably increased with fiberglass face sheets. The panels are manufactured using the compression molding process, where the honeycomb core is crushed up to the desired thickness. The crushed core breaks fiberglass face sheets and causes other damage, so the panel must be reworked. Some damage is associated with excessive build-up of resin in localized areas, incomplete curing of the pre-impregnated fiberglass during the manufacturing process, and excessive temperature or residence time during the compression molding. This work evaluates the feasibility of using rigid polyurethane foams as a substitute for the honeycomb core. The thermal and viscoelastic behavior of the cured prepreg fiberglass under different manufacturing conditions is studied. The first part of this work presents the influence of the manufacturing parameters and the feasibility of using rigid foams in manufacturing flat panels oriented to non-structural applications. The conclusion of the article describes the focus of future research.


2020 ◽  
Author(s):  
Sooyoung Lee ◽  
Chaeyoung Hong ◽  
Taeseong Choi ◽  
Hye-gyu Kim ◽  
Wooseok Ji

2011 ◽  
Vol 306-307 ◽  
pp. 879-883 ◽  
Author(s):  
Xiao Li Dai ◽  
Xiang Wang ◽  
Jun Wang

E-glass fiber woven roving reinforced polyurethane composites were manufactured by three different processes: hand lay-up, compression molding and vacuum infusion to assess the feasibility of all the processes. The results showed that all composites led to significant improvements in both flexural and tensile properties except elongation at break in comparison with the neat PU. Among the three processes, the best bending strength was exhibited by the hand lay-up process. This is attributed to higher PU mass fraction leads to a better fiber–matrix interfacial adhesion. Mechanical properties of the composite molded by vacuum infusion were superior to that produced by compression molding process. The SEM morphology revealed that vacuum infusion composite had more homogeneous micro- structure.


2006 ◽  
Vol 77B (2) ◽  
pp. 287-295 ◽  
Author(s):  
Donggang Yao ◽  
Aaron Smith ◽  
Pratapkumar Nagarajan ◽  
Adrian Vasquez ◽  
Loan Dang ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1075 ◽  
Author(s):  
Liming Zhu ◽  
Lihua Lyu ◽  
Xuefei Zhang ◽  
Ying Wang ◽  
Jing Guo ◽  
...  

Conventionally laminated spacer composites are extensively applied in many fields owing to their light weight. However, their impact resistance, interlaminar strength, and integrity are poor. In order to overcome these flaws, the zigzag-shaped 3D woven spacer composites were rationally designed. The zigzag-shaped 3D woven spacer fabrics with the basalt fiber filaments tows 400 tex (metric count of yarn) used as warp and weft yarns were fabricated on a common loom with low-cost processing. The zigzag-shaped 3D woven spacer composites were obtained using the VARTM (vacuum-assisted resin transfer molding) process. The three-point bending deformation and effects of damage in zigzag-shaped 3D woven spacer composites were studied both in experiment and using the finite element method (FEM). The bending properties of zigzag-shaped 3D woven spacer composites with different direction, different numbers of weaving cycle, and different heights were tested in experiments. In FEM simulation, the geometrical model was established to analyze the deformation and damage based on the 3D woven composite structure. Compared with data obtained from the experiments and FEM simulation, the results show good agreement and also prove the validity of the model. Based on the FEM results, the deformation, damage, and propagation of stress obtained from the model are very helpful in analyzing the failure mechanism of zigzag-shaped 3D woven composites. Furthermore, the results can significantly guide the fabrication process of real composite materials.


2006 ◽  
Vol 45 (25) ◽  
pp. 6511 ◽  
Author(s):  
Allen Y. Yi ◽  
Chunning Huang ◽  
Fritz Klocke ◽  
Christian Brecher ◽  
Guido Pongs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document