scholarly journals Influence of Graphene Nano Fillers and Carbon Nano Tubes on the Mechanical and Thermal Properties of Hollow Glass Microsphere Epoxy Composites

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Kumar D ◽  
Kiran Shahapurkar ◽  
C. Venkatesh ◽  
Muruganandhan R ◽  
Vineet Tirth ◽  
...  

The present work aimed to analyze the roll of carbon nano tubes and graphene nano fillers on the mechanical and thermal characteristics of hollow glass microsphere reinforced epoxy composites. Composites with varying content of hollow glass microballoons (2, 4, 6, 8, and 10 wt %) reinforced in epoxy matrix were fabricated. Additionally, two more types of composites, one with graphene nano fillers and the other with carbon nano tube at a constant 0.5 wt %, were fabricated with varying weight percentages of hollow glass microballoons (2, 4, 6, 8, and 10%). The composites were fabricated using an open mold casting process. Composites were tested for thermal and mechanical properties. The tensile and flexural moduli were found to rise as the HGM concentration increased. Graphene-filled HGM/epoxy composites revealed the highest modulus compared with HGM/epoxy and HGM/CNT/epoxy composites. The impact strength of all composite types decreased as the HGM content increased. Neat epoxy specimens revealed low response as compared with all the composites tested. Further, the thermal conductivity of HGM/epoxy composites was lower as compared with other compositions and neat epoxy. Scanning electron microscopy was used to analyze the surface morphological behavior of the composites subjected to flexural test. It was found that HGM/G/E composites with 10% of HGM and 0.5% of graphene by weight in epoxy matrix were the optimum.

2007 ◽  
Vol 15 (6) ◽  
pp. 445-451 ◽  
Author(s):  
J.R.M. d'Almeida

The compressive yield strength of glass microsphere – epoxy composites was evaluated as a function of the interface strength. The behaviour of composites with microspheres without any surface treatment was compared with that of composites fabricated with silane-treated and silicone oil-treated microspheres. Varying the hardener-to-epoxy ratio of the matrix also modified the interface. The results were compared with those derived from theoretical models, and it was shown that for hollow glass microsphere composites the effect of surface treatment can be quantitatively described using extant models. Changes in the reinforcing effect and stress concentration factor caused by the presence of the microspheres are discussed, and the experimental results explained.


2012 ◽  
Author(s):  
Z. X. Wu ◽  
R. J. Huang ◽  
X. X. Chu ◽  
C. J. Huang ◽  
J. J. Zhang ◽  
...  

2017 ◽  
Vol 458 ◽  
pp. 52-60 ◽  
Author(s):  
Fang Li ◽  
Jing Li ◽  
Jianhong Feng ◽  
Zhanwen Zhang ◽  
Meifang Liu ◽  
...  

Author(s):  
Olusegun Adigun Afolabi ◽  
Krishnan Kanny ◽  
Turup Mohan

AbstractEpoxy syntactic foams (SF) filled with hollow glass microspheres (HGM) were prepared by simple resin casting method and characterization in this study. The effect of varying the amount of HGM on the specific mechanical and water absorption properties of SF composites were investigated. Five different composition of SF (SFT60-0.5 to SFT60-2.5) were compared with the neat epoxy matrix. The wall thickness of the microballoons differ because of its different percentile size distribution (10th, 50th and 90th), which reflects in its density variation. The results show that the specific tensile and flexural strength increases with an increasing filler (HGM) content. The density of SF filled with HGM reduces with increasing volume fraction of filler content. Scanning electron microscopy was done on the failed samples to examine the fractured surfaces. The water absorption capacity of the SF was also investigated as it relates to the HGM volume fraction variation. All the syntactic foam composition shows a better diffusion coefficient capacity than the neat epoxy resin. This makes it applicable in structural purposes and several marine application products such as Autonomous Ultimately Vehicle (AUV).


2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.


Sign in / Sign up

Export Citation Format

Share Document