scholarly journals Bond–slip behavior of fiber-reinforced polymer/concrete interface in single shear pull-out and beam tests

2015 ◽  
Vol 35 (5) ◽  
pp. 375-386 ◽  
Author(s):  
Tayyebeh Mohammadi ◽  
Baolin Wan ◽  
Kent A Harries
2020 ◽  
Vol 23 (15) ◽  
pp. 3323-3334
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

The bonding performance of basalt fiber-reinforced polymer and concrete substrate has a significant effect on the reliability of externally strengthened existing concrete structure, due to being the most vulnerable element to failure in this fiber-reinforced polymer–concrete strengthening system. Its failure can result in the failure of the whole structure. Although many previous researchers have been interested in the tensile bonding strength of carbon fiber-reinforced polymer and glass fiber-reinforced polymer–concrete interface, that of basalt fiber-reinforced polymer–concrete interface has been very limited. Thus, the objective of this study is to experimentally assess the tensile bonding strength of the basalt fiber-reinforced polymer–concrete interface. The effects of high temperature, freezing–thawing cycles, type of resin, and concrete crack widths on the tensile bonding strength are also investigated. The pull-off experiment is conducted according to ASTM D7522/D7522M-15. A total of 205 core specimens of 50 mm diameter and 10 mm depth were taken from 41 concrete beams. The experimental results illustrate that both freezing–thawing and high-temperature condition have a substantial effect on the bonding strength of the basalt fiber-reinforced polymer–concrete interface. Bonding strength was decreased within the range of about 9%–30% when the number of freezing–thawing cycles increases from 100 to 300; likewise, it was decreased up to 30% when the exposure temperature rises to 200°C. Also, the specimens which were repaired to close their cracks by epoxy resin had no significant effect on the bonding strength of basalt fiber-reinforced polymer–concrete interface, when the specimens had crack width of less than 1.5 mm.


2020 ◽  
Vol 23 (8) ◽  
pp. 1644-1655
Author(s):  
Zongquan Liu ◽  
Qingrui Yue ◽  
Rong Li ◽  
Xiaobing Chen

Carbon-fiber-reinforced polymer grids encased with polymer mortar have received much attention lately as an effective technology for strengthening concrete structures. The objective of this study was to investigate the bond-slip behavior of carbon-fiber-reinforced polymer grids to polymer mortar at room and elevated temperatures. First, 20 pull-out specimens were tested at room temperature of 20°C, and the investigated parameters included the type of carbon-fiber-reinforced polymer grids, the embedment length of longitudinal bar, and the transverse bar length. Based on the experimental results, a two-branch bond-slip model at room temperature was proposed, with the characteristic bond stress and the corresponding slip determined by the regression analysis of test data. Second, 24 pull-out specimens were tested at elevated temperatures over a range of 20°C–300°C, and the investigated parameters included the type of carbon-fiber-reinforced polymer grids and the testing temperature. Based on the experimental results, a bond-slip model at elevated temperatures was further proposed by modeling the temperature-dependent reduction factors. The two proposed bond-slip models will be particularly useful in the theoretical analysis of structures with carbon-fiber-reinforced polymer grids and polymer mortar strengthening system under both room and elevated temperatures.


2020 ◽  
pp. 073168442094160
Author(s):  
Yuntao Hua ◽  
Shiping Yin ◽  
Zihan Wang

In this paper, the influences of parameters such as the bond length, surface textures of reinforcement, reinforcement type and stirrups restraint were considered. Pull-out failure, splitting failure and splitting-pullout failure modes were observed during the test. The slip at the free end always lagged behind the slip at the loading end and the bond-slip curve of ribbed basalt fiber reinforced polymer (BFRP) bars included the micro-slip stage, slip stage, descent stage, and residual stage. Reducing the bond length and using ribbed-sand coated bars were beneficial to improve the bond performance. Increasing the bond length from 2.5 d to 5 d reduced the bond strength by 49.2%. The application of ribbed-sand coated bars instead of plain bars increased the bond strength by 1202.3%. The difference in bond strength between steel bars, BFRP bars and glass fiber reinforced polymer (GFRP) bars was small and the bond strengths of the three were much greater than that of carbon fiber reinforced polymer (CFRP) bars. This was mainly attributed to the different rib forms of the bars. The application of stirrups increased the bond strength by 11.5%, which indicated that the stirrup restraints can improve the bond behavior to a certain extent. Besides, the analysis of the bond-slip curve based on the energy perspective was consistent with test results.


Sign in / Sign up

Export Citation Format

Share Document